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Abstract. Crowd counting refers to the task of estimating the number of people1

within a specific area, which provides insights into crowd dynamics and distribution.2

This task has widespread applications across various domains, including public3

safety, urban planning, and traffic management. Recent advances in deep learning,4

particularly the convolutional neural networks and the Transformer architecture, as5

well as multimodal pre-trained models, such as CLIP and SAM, have substantially6

improved counting accuracy. However, existing models are mainly designed in high-7

complexity architecture, which incur heavy computational and data requirements,8

and hinder real-time deployment and increase the cost. Consequently, lightweight9

crowd-counting approaches have emerged as a key research direction, which aims10

to reduce parameters and inference time while retaining high performance. In this11

survey, we summarize publicly available datasets, evaluation metrics, latest lightweight12

architectures, and evaluate representative models on benchmark datasets to inspire13

future research in crowd counting.14

Keywords: Lightweight network, Crowd counting, Literature review, Density estimation,15

Performance evaluation.16

1. Introduction17

Crowd counting is a key research area within computer vision. It aims at estimating18

and analyzing crowd density and distribution across designated spaces [1, 2, 3, 4, 5].19

This research has widespread application in public safety, urban planning, and traffic20

management fields [6, 7, 8, 9, 10]. For example, to address crowd counting under21

public security demands, Guo et al. [11] proposed a scale region recognition network.22

It is tailored to identify human bodies of varying scales and incorporates scale-level23
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awareness and object region recognition modules to distinguish body regions and reduce24

distractions from background [5]. Chen et al. [10] introduced a frequency pyramid-25

based model aimed at object counting for urban development and traffic systems.26

A pyramid attention and hybrid feature pyramid modules were proposed to enhance27

detection precision and reduce the effects of background complexity [10].28

Early crowd counting methods relied on classical computer vision techniques,29

which can be categorized into detection-based approaches [12, 13, 14, 15, 16, 17] and30

regression-based approaches [18, 19, 20]. Detection-based methods detect the individual31

by scanning the image with sliding windows and applying classifiers to check for the32

presence of human targets. For example, the Viola-Jones detector [12] uses Haar33

features and a cascade of AdaBoost classifiers for fast face detection. The Deformable34

Part Models [15] improve robustness to pose changes and occlusions using deformable35

parts. These methods perform well in sparse scenes. However, they often fail in dense36

crowds due to frequent occlusions and overlapping boxes. In contrast, regression-based37

approaches skip individual detection. They directly map an image or image patch to38

a count or density value. Early studies [18, 19] extracted hand-crafted features, such39

as HOG [20], and used linear or support vector regression to estimate numbers. These40

methods handle occlusion better in dense scenes, but their accuracy is limited due to the41

hand-crafted features. Overall, the detection-based and regression-based methods often42

struggled with accuracy in high-density, complex scenes [21]. The rapid progress of43

deep learning has since introduced convolutional neural networks (CNNs) as the leading44

approach for crowd counting, with CNNs proving highly effective at feature extraction,45

particularly in dense and complex crowd scenes [22, 23, 24, 25, 26, 27].46

While deep networks like CNNs have advanced significantly in performance, they47

typically require extensive layers and parameters, resulting in high computational48

costs [28, 29, 30, 31]. High-complexity models [32, 33, 34, 35, 11] achieve high accuracy49

but impose significant computational and memory overhead, which restricts their50

application in real-world settings, especially in resource-limited environments. With51

the growth of IoT (Internet of Things) and edge computing, this issue has become52

even more pressing [36, 37, 38, 39, 40]. Consequently, reducing computational demands53

while maintaining model accuracy has become a pivotal challenge in crowd counting54

research [41, 42]. To address this challenge, researchers have increasingly focused on55

designing lightweight networks [43, 44, 45, 46]. These networks aim to decrease the56

number of parameters and computational demands to achieve greater efficiency and57

resource utilization while retaining model performance. Current lightweight methods58

can be categorized into three main types.59

(i) Lightweight Architecture-based Networks [47, 48, 49, 50, 51]. These networks60

aim to build efficient neural architectures that lower both parameter counts and61

computational overhead. By refining the network structures, including layer62

reduction and the use of lightweight convolutions, these networks achieve a balance63

between performance and computational efficiency.64
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(ii) Lightweight Module-based Networks [52, 53, 54, 46, 55]. These networks65

build on existing models by incorporating specific modules, like lightweight66

attention mechanisms or multi-scale feature fusion, to improve feature extraction67

and adaptability. This strategy optimizes computational resources and enhances68

performance in complex, high-density crowd scenarios.69

(iii) Knowledge Distillation-based Networks [56, 57, 58, 59, 60]. These networks70

transfer insights from a large teacher model to a compact student model. This71

approach enables the student model to achieve high accuracy while significantly72

reducing parameters and computational demands. During distillation, soft labels73

and feature representations from the teacher model serve as learning samples74

to guide the student model to better understand complex data distributions.75

Knowledge distillation is particularly useful for crowd counting in complex76

environments. It allows lightweight models to attain high counting accuracy and77

be suitable for deployment in resource-limited environments.78

The three lightweight methods show strong adaptability and potential for use in79

resource-limited environments. This paper systematically reviews these methods and80

provides a detailed analysis of their features and suitability to support lightweight81

network research in crowd counting. The main contributions of this paper are as follows.82

(i) This paper reviews mainstream lightweight crowd counting methods, which are83

categorized into three main types to provide researchers with a detailed technical84

framework.85

(ii) This paper analyzes various lightweight models by comparing their performance86

in accuracy, efficiency, and resource utilization to provide practical insights for87

application.88

(iii) This paper identifies the development potential of lightweight crowd counting89

methods based on current limitations and provides a clear direction for future90

research.91

The structure of this paper is organized as follows. Section 1 provides an overview92

of the research background and current progress. Section 2 discusses basic knowledge of93

lightweight crowd counting with an overview of essential datasets and evaluation metrics94

that ground the later analysis. Section 3 reviews recent mainstream lightweight methods95

in crowd counting, with a focus on network structure optimization, lightweight module96

integration, and knowledge distillation. Section 4 presents a comparative analysis of97

mainstream lightweight models on common datasets and evaluates their accuracy and98

efficiency. Section 5 discusses existing challenges and future directions in lightweight99

crowd counting technologies to offer guidance for future research. Section 6 concludes100

the paper with a comprehensive summary.101
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2. Crowd Counting Datasets and Evaluation Protocols102

2.1. Datasets103

The field of crowd counting has witnessed the development of many benchmark datasets,104

each distinguished by its specific features. We present an overview of several widely105

adopted datasets, with their key characteristics summarized in Table 1.106

Shanghai Tech[61] is one of the largest and most widely used crowd-counting datasets107

in recent years. It contains 1,198 images with a total of 330,165 labeled annotations.108

The dataset is divided into Part A and Part B to represent various crowd densities109

and scene complexities. Part A contains 300 training images and 182 testing images110

sourced from the internet and features dense crowd scenes. Part B includes 400 training111

images and 316 testing images taken on Shanghai streets, which reflect sparse crowd112

distributions. The dataset shows an imbalance in image density, with a higher prevalence113

of low-density images in both the training and testing sets. Additionally, the scale and114

perspective variations introduce challenges and opportunities for designing CNN-based115

network architectures.116

UCF CC 50 [62] represents the first challenging dataset created from publicly117

accessible web images. It consists of 50 images with various resolutions across a range of118

scenes, including concerts, protests, stadiums, and marathons, which showcase diverse119

density levels and perspective distortions.120

UCF-QNRF [63] is a challenging collection of 1,535 high-resolution crowd images,121

with 1,201 used for training and 334 for testing. It contains approximately 1.25 million122

annotations, which cover diverse scenes with varying perspectives, densities, and lighting123

conditions. The average resolution of these images is 2, 013×2, 902 pixels. Additionally,124

the dataset includes authentic outdoor scenes from across the globe, capturing various125

elements such as buildings, vegetation, sky, and roads. This diversity is crucial for126

examining regional differences in population density.127

NWPU-Crowd dataset [64] contains 5,109 images with a total of 2,133,238 annotated128

individuals, and an average resolution of 2, 191 × 3, 209 pixels. This dataset includes129

negative samples, which enhance model robustness during training. Compared to other130

datasets, it offers greater diversity in scale, density, and background. Additionally, it131

includes negative samples without any individuals, further enriching the dataset’s overall132

diversity.133

WorldExpo’10 dataset [65] is a comprehensive cross-scene crowd counting dataset134

from the 2010 Shanghai World Expo. It includes 1,132 annotated video sequences135

recorded by 108 surveillance cameras, comprising 3,920 frames at a resolution of 576×720136

and annotations for 199,923 individuals. The training data covers 3,980 frames from137

103 scenes, while the testing data consists of 600 frames from an additional 5 scenes.138

This diversity of scenes supports crowd counting research across varied environmental139

contexts.140

JHU-CROWD++ [66] comprises 4,372 images from varied online scenes, with an141

average of 346 annotations per image, and a peak annotation count of 25,791. It142
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captures a range of weather conditions, such as rain, snow, and haze. It also offers143

comprehensive annotations at both the image and head levels, with each annotation144

including head position, size, occlusion level, and blur. These rich details enhance data145

quality for more efficient model training.146

Table 1: Information of the datasets adopted for comparison.

Dataset # ImagesTrain Val TestAverage resolutionMin Max Avg Total

Part A [61] 482 300 - 182 589 × 868 33 3,139 501 241,677

Part B [61] 716 400 - 316 768 × 1,024 9 578 123 88,488

UCF CC 50 [62] 50 40 - 10 - 94 4,543 1,280 63,705

UCF-QNRF [63] 1,535 1,201 - 334 2,013 × 2,902 49 12,865 815 1,251,642

NWPU-Crowd [64] 5,109 3,190 500 1,500 2,191 × 3,209 0 20,033 418 2,133,238

WorldExpo’10 [65] 3,920 3,380 - 600 576 × 720 - - - 199,923

JHU-CROWD++ [66] 4,372 2,272 500 1,600 910 × 1,430 0 25,791 346 1,515,005

2.2. Evaluation Protocols147

In crowd counting, the two most commonly used criteria are Mean Absolute Error148

(MAE) and Mean Square Error (RMSE), which are defined as follows:149

MAE =
1

N

N∑
i=1

∣∣∣Cpred
Ii

− Cgt
Ii

∣∣∣ , (1)

150

MSE =

√√√√ 1

N

N∑
i=1

∣∣∣Cpred
Ii

− Cgt
Ii

∣∣∣2, (2)

where N is the number of the test image, Cpred
Ii

and Cgt
Ii

represent the prediction151

results and ground truth, respectively. Especially, MAE determines the accuracy of152

the estimates, while RMSE indicates the robustness of the estimates.153

To assess the performance of lightweight networks, four metrics, namely154

parameters(Params), floating-point operations (FLOPs), frames per second (FPS), and155

inference time [44, 52, 67, 68] are commonly adopted. Parameters reflect memory and156

storage needs, crucial for edge deployment. FLOPs estimate the number of operations157

required during forward passes. It represents computational demand. FPS indicates how158

efficiently the model processes real-time data, while inference time focuses on the latency159

for a single input. These indicators examine the model from multiple aspects, i.e., size,160

speed, complexity, and delay. They form a foundational framework for lightweight model161

evaluation [49, 69, 48, 70]. The formulas are described as follows,162

Params =
L∑
i=1

(Wi +Bi) , (3)
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163

FLOPsconv = 2× Cin ×Hout ×Wout ×Kh ×Kw × Cout, (4)
164

Inference Time =
1

M

M∑
i=1

Elapsed Time(i), (5)

165

FPS =
1000

Inference Time
, (6)

where L denotes the number of layers in the model, Wi represents the weight parameters166

and Bi indicates the bias parameters for the i-th layer. Cin specifies the number of167

input channels, while Hout and Wout refer to the height and width of the output feature168

map, respectively. The convolution kernel dimensions are given by Kh (height) and Kw169

(width). Cout stands for the number of output channels. Additionally, Elapsed Time(i)170

measures the inference time for each iteration i in milliseconds, and M represents the171

total number of iterations.172

3. Lightweight Networks173

With a growing emphasis on lightweight model architectures, researchers have174

developed compact neural networks such as MobileNet [47], ShuffleNet [48], and175

GhostNet [49]. These models maintain accuracy while reducing computational and176

storage demands [71]. Consequently, they are well-suited for deployment in resource-177

constrained environments, such as mobile devices and embedded systems. While178

lightweight networks have achieved notable optimizations in parameter and computation179

efficiency, they still face significant challenges in complex crowd scenes, such as180

identifying subtle variations within dense crowds and intricate backgrounds [44, 72, 46].181

To address these issues, researchers have responded by designing networks specifically182

for crowd counting and analysis to strengthen performance and robustness in complex183

scenarios [73, 74, 75]. Further advancements in balancing lightweight design with184

improved adaptability and expressiveness remain a focus of this field. The following185

sections present a categorized overview of lightweight models and summarize recent186

advancements and innovative developments.187

3.1. Lightweight Architecture-based Networks188

Lightweight architecture-based networks reduce parameter counts and computational189

demands to create efficient neural models suitable for resource-limited environments [76,190

69, 77]. These networks implement structural optimizations through strategies such as191

minimizing network depth and using depthwise separable and grouped convolutions.192

We divide these networks into two categories based on problem-oriented approaches.193

The first category includes methods that address the scale variation issue, such as194

MCNN [61], PCCNet [43], and some similar approaches [26, 54, 50, 67, 78, 79].195

These methods focus on crowd distribution across various scales, especially in high-196

density scenes, and use techniques such as multi-scale feature extraction to manage197
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the differences between distant and near targets. The second category focuses on198

background noise, such as MCNet [80], TinyCount [81], and so on [51, 82, 83]. These199

methods aim at reducing the impact of background noise on crowd counting, particularly200

in environments with occlusion and complex backgrounds.201

To solve the problem of scale variation in images, Zhang et al. [61] proposed202

the Multi-column Convolutional Neural Network (MCNN). This method employs three203

parallel branches with different receptive fields to extract features at various scales. It204

removes the fully connected layers and keeps only convolutional and pooling layers,205

with a final 1×1 convolutional layer used to produce the density map. This multi-206

column structure reduces computational costs, achieves model lightweight, and improves207

real-time performance, which makes it suitable for diverse crowd densities and multi-208

perspective scenarios. However, MCNN [61] primarily relies on local features and209

lacks global feature capture, which limits its accuracy in high-density scenes. Based210

on MCNN [61], Ma et al. [84] presented a cascaded small-filter approach to achieve211

finer multi-scale feature extraction while further reducing computational demands. This212

method designs a lightweight three-stage network that includes multi-scale feature213

extraction, density map estimation, and refinement to balance accuracy and efficiency.214

However, this network continues to struggle with capturing global features in high-215

density and complex scenes, which constrains its precision and generalization. Shi et
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Figure 1: The architecture of the CCNN [50].

216

al. [50] developed the Compact Convolutional Neural Network (CCNN) to optimize217

computational efficiency further. As illustrated in Figure 1, CCNN [50] includes three218

parallel convolutional layers at the front, each with different kernel sizes to capture219

multi-scale local features. It merges the generated feature maps into a single unified220

feature map. This approach provides efficient real-time performance while maintaining221

a low computational cost.222

However, CCNN [50] also has limitations due to the lack of a background noise223

suppression mechanism, which impacts its accuracy in complex scenes. Based on224

CCNN [50], Thai et al. [51] proposed the Dilated Compact Convolutional Neural225
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Network (DCCNN) to enhance background noise suppression in crowd counting. As226

depicted in Figure 2, DCCNN [51] introduces a dilated convolution in the second layer,227

with a dilation rate of 2. This adjustment expands the receptive field without increasing228

computational costs and strengthens noise suppression. Additionally, DCCNN [51]229

replaces max pooling with average pooling in the second and third layers. This230

modification helps reduce the loss of critical counting details. Batch normalization231

is also applied across all convolutional layers to improve model stability and accelerate232

convergence. Despite these advancements, DCCNN [51] still has limitations in capturing233

global features. It also performs less adaptively in sparse scenes, which affects its234

accuracy. To address the background noise issue, some studies combine multi-scale
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235

features with attention mechanisms. Guo et al. [80] proposed MCNet, as shown in236

Figure 3. MCNet [80] improves model robustness in complex environments by merging237

multi-scale feature extraction with spatial attention mechanisms. First, it encodes the238

original image into high-level texture features through a series of convolutional layers,239

ReLU activations, and pooling operations. Then, these features are fed into the multi-240

scale attention layer. It uses multi-scale dilated convolutions and spatial attention to241

dynamically adjust the importance of various regions. This enables the network to focus242

on essential areas, improve accuracy in high-density regions, and effectively mitigate243
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background noise interference.244

3.2. Lightweight Module-based Networks245

To enhance the feature extraction and adaptability of lightweight crowd counting246

models, specialized modules such as lightweight attention and multi-scale feature fusion247

are added to the lightweight models. Compared to lightweight architecture-based248

networks, lightweight module-based networks focus on optimizing model characteristics249

through modular design. By introducing modular components, the model can flexibly250

select or adjust the appropriate modules based on task requirements. It improves the251

performance of the model in complex environments.252

We classify the lightweight module-based networks into two categories. The first253

category focuses on addressing scale variation by using multi-scale feature fusion and254

adaptive modules. The second category addresses background noise. It uses specific255

modules to suppress background interference. For instance, lightweight attention256

mechanisms enable the model to focus on important regions while minimizing irrelevant257

background noise. Meanwhile, it maintains high accuracy even in complex environments.258
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To handle the challenge of scale variation, Yi et al. [52] proposed LEDCrowdNet,259

a lightweight network for crowd counting that optimizes both computational efficiency260

and accuracy. As shown in Figure 4, the LEDCrowdNet [52] used MobileViT [85] as261

the encoder to extract multi-scale crowd features. The decoder integrates enhanced262

AMLKA and LC-ASPP modules to generate high-quality density maps. The AMLKA263

module captures multi-scale features through convolutions with three dilation rates to264

address information loss associated with traditional large kernels. The LC-ASPP module265
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uses adaptive average pooling and sparse convolutions to improve feature localization266

accuracy and reduce computational cost. LEDCrowdNet [52] achieves a balance between267

efficiency and accuracy in sparse scenarios, but its feature extraction is less stable in268

dense environments.
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269

Zhai et al. [46] developed FPANet, a lightweight network designed to address the270

challenges of scale variation in dense crowd scenarios. Based on shallow features from271

ResNet-50 [86], FPANet [46] includes a feature pyramid module, an attention module,272

and a multi-scale aggregation module (Figure 5). The feature pyramid module employs
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Figure 6: The architecture of the PSA unit and LCA unit [46].

273

multi-scale convolutional kernels to extract features in a pyramid structure, capturing274

crowd features across different scales. As illustrated in Figure 6, the attention module275

comprises a pyramid spatial attention (PSA) unit and a lightweight channel attention276

(LCA) unit. PSA highlights spatial features in head regions, reducing background277

interference, while LCA enhances connections between key channels for improved feature278

focus. The multi-scale aggregation module integrates spatial and channel attention279

information to enrich feature representation and increase adaptability to complex280
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crowd scenes. Although the two modules in FPANet [46] significantly enhance model281

performance, they also introduce additional computational overhead, which limits their282

applicability on devices with limited resources.283

Liu et al. [55] introduced Lw-Count, a lightweight crowd counting network designed284

to address scale variation challenges while maintaining high accuracy and operational285

efficiency. As demonstrated in Figure 7 and Figure 8, this network uses a streamlined286

HRNet [87] as its baseline and introduces two key modules for enhanced performance:287

the Efficient Lightweight Convolution Module (ELCM) and the Scale Regression Module288

(SRM). ELCM utilizes a refined Ghost Block structure to extract features with minimal
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Figure 7: The architecture of the Lw-Count [55].

289

parameters, incorporating spatial group normalization to address counting challenges290

associated with uneven crowd distributions. The SRM module in the decoding stage291

aggregates multi-scale features layer by layer. This approach minimizes interpolation292

errors and prevents artifacts from transposed convolutions to enhance the quality of the293

density map. Additionally, Lw-Count [55] employs a region-normalized cross-correlation
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loss to strengthen spatial consistency, which further refines counting accuracy. However,295
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the simplified HRNet [87] limits the ability of the network to capture fine-grained details296

across multiple scales in high-density and complex scenes. The redundant features297

generated by ghost block [49] are less effective in capturing boundary information, which298

reduces accuracy in high-density crowd regions.299

Although multi-scale modules enhance the capacity of the model to handle scale300

variations, background noise remains a bottleneck under complex scenes. To address301

this, Guo et al. [44] proposed the Ghost Attention Pyramid Network (GAPNet) to302

suppress background interference. GAPNet [44] uses GhostNet [49] as the backbone to
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303

extract low-level features. As shown in Figure 9, the model takes a crowd image as304

input and generates the corresponding predicted density map as output. To identify305

discriminative crowd regions efficiently, GAPNet [44] introduces a zero-parameter306

channel attention (ZCA) (Figure 10) module that adjusts channel weights through linear307

transformations and activation functions. The ZCA module first applies global average308

pooling to obtain statistical features for each channel. It then introduces an energy-based309

weighting scheme to emphasize channels with significant differences from the target.310

This enhances the attention of the model to informative features. This module contains311

no learnable parameters. All attention scores are derived through predefined linear312

operations and normalization, which keeps the computation lightweight. Additionally,313

GAPNet [44] incorporates an Efficient Pyramid Fusion (EPF) module with a four-314

branch design to enhance background suppression. By combining group convolutions315

with dilated convolutions, the EPF module effectively filters out irrelevant background316

features while maintaining a low parameters. In the decoder stage, multiple transposed317

convolution layers generate the final density map. Although GAPNet [44] achieves318

reduced computational costs and improved efficiency, its streamlined design limits319

feature extraction depth, impacting accuracy in high-density settings.320

Other lightweight module-based networks such as Chen et al. [88], Yi et al.321

[89], LMSNet [90], LigMSANet [91], MDCount [92], PDDNet [93], MLRNet [94],322

MobileCount [45], JMFEEL-Net [95], LSANet [96], and Yu et al. [97] address scale323

variation, whereas NeXtCrowd [98], ConNet [99], PSCC + DCL [53], LDNet [100], and324

LigMANet [101] focus on suppressing background interference.325
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Figure 10: The structure of the ZCA module [44].

3.3. Knowledge Distillation-based Networks326

Knowledge distillation enables lightweight networks by transferring expertise from a327

large teacher model to a smaller, yet more efficient student model [102, 103]. This328

strategy reduces parameters and computational load while preserving model accuracy.329

During distillation, the student model learns from both the ground truth and the330

guidance of the teacher. These additional cues help the model capture more detailed331

patterns and enhance its adaptability and accuracy in crowd counting tasks. By332

combining lightweight design with high accuracy, knowledge distillation is widely333

adopted for crowd counting applications in resource-limited settings.334
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Figure 11: The structure of the SKT [58].

Liu et al. [58] proposed a lightweight crowd counting network termed the335

Structured Knowledge Transfer (SKT) framework, as shown in Figure 11. It is designed336

to effectively transfer knowledge from a trained large teacher model to a smaller student337

model. The SKT framework [58] employs CSRNet [24] as the teacher network and a338

simplified CSRNet [24] as the student network. To support effective knowledge transfer,339

SKT [58] includes two main modules: the Intra-Layer Pattern Transfer (Intra-PT) and340
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the Inter-Layer Relation Transfer (Inter-RT). Intra-PT allows for the stepwise transfer341

of intra-layer patterns from the teacher to guide the student’s local feature learning,342

while Inter-RT captures relationships across layers in the teacher model, helping the343

student understand feature evolution. These modules equip the student model for344

efficient learning under lightweight design principles. However, due to its reliance on345

fixed feature patterns, SKT [58] has limited capacity to capture global features in dense346

and complex scenes. Moreover, the generalization ability of the student model depends347

on the performance of the teacher model.348

Building on this, Liu et al. [104] introduced the ReviewKD method, which is an349

enhancement of the SKT framework. This approach strengthens feature learning in the

Student
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Teacher
network

Density
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Decoder
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map M2

Decoder

Feature 2

. . .

DecoderTransfer
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Input image

1st review 2st review

Figure 12: The architecture of the ReviewKD [104].

350

student model through two distillation stages: Instruction and Review, as demonstrated351

in Figure 12. In the Instruction stage, the teacher network gradually transfers its feature352

patterns to the student, guiding its learning process. In the Review stage, a density map353

serves as an attention weight to help the student focus on key areas and progressively354

improve feature extraction ability. This dual-stage approach narrows the performance355

disparity between teacher and student networks effectively. While ReviewKD [104]356

significantly improves the counting accuracy of the student network, it heavily relies on357

high-level features from the teacher model. This reliance limits robustness in complex358

environments. Furthermore, the review mechanism focuses on optimizing local features,359

neglecting the need for dynamic scene adaptation.360

To address these limitations, Huang et al. [60] proposed a lightweight361

crowd counting network based on knowledge distillation, named Improved Knowledge362

Distillation (IKD), which aims to enhance counting performance in compact models.363

The framework of IKD [60] is illustrated in Figure 13. EffCC-lite2 [105] serves as the364

teacher network to provide knowledge for a student network. The student network, as365

a variant of EffCC-lite with reduced parameters, is suitable for deployment on resource-366

limited devices. IKD incorporates two main modules: self-transformed hints and outlier-367

tolerant loss, which address challenges related to information loss and outliers. In368

the IKD framework [60], the self-transformed hints module ensures feature dimensions369

remain consistent between teacher and student networks. This consistency eliminates370

the transformer dependency typically found in traditional knowledge distillation, thus371

reducing information loss. The outlier-tolerant loss module further improves the model372
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Figure 13: The framework of the IKD [60].

by limiting the influence of abnormal data during distillation. This enhancement373

increases the model’s robustness and counting accuracy in high-density scenes. Although374

IKD [60] significantly improves the student network’s counting accuracy, its adaptability375

and generalization in dynamic scenes remain limited.376

Other knowledge distillation-based networks include ShuffleCount [56], DKD [57],377

Repmobilenet [59], D2PT [106], Gu [107], MJPNet-S* [108], EdgeCount [109], Duan et378

al. [110] and several others.379

4. Analysis of Experimental Results380

To comprehensively evaluate the performance of various crowd counting methods, this381

study presents a comparative analysis of representative models based on accuracy and382

efficiency, as shown in Table 2 and Table 3. The evaluation is conducted on four datasets,383

including ShanghaiTech Part A [61], ShanghaiTech Part B [61], UCF CC 50 [62], UCF-384

QNRF [63], and NWPU [64], which are widely recognized benchmarks in the field of385

crowd counting.386

As shown in Table 2, heavyweight models generally outperform the lightweight387

models in precision. APGCC [32] performs best across multiple datasets. It reaches388

48.8 in MAE on ShanghaiTech Part A. On UCF-QNRF and NWPU datasets, where389

scenes are dense and complex, APGCC [32] records MAEs of 80.1 and 71.7, respectively.390

UEPNet [115] also performs well. It achieves an MAE of 6.9 and an RMSE of 10.6391

on the ShanghaiTech Part B dataset, which demonstrates superior performance over392

most lightweight models. Other methods, such as STNet [116] and DLPTNet [35],393

achieve good performance in multiple metrics and provide further evidence for the394

superiority of large-scale architectures. On the other hand, although the performances of395

the lightweight models in accuracy are inferior to the heavyweight models, lightweight396

models demonstrate advantages in Parameters, which makes them suitable for edge397

devices and limited-resource settings. For instance, TinyCount [81] achieves 78.2 in398
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Table 2: Comparison of accuracy across different crowd counting methods. The upper

part of the table represents heavyweight networks, and the lower parts represent

lightweight networks. The “LA-based” represents Lightweight Architecture-based

Networks, the “LM-based” represents Lightweight Module-based Networks, and the

“KD-based” represents Knowledge Distillation-based Networks.

Methods Year
Part A Part B UCF CC 50 UCF-QNRF NWPU

Params(M)
MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

H
ea
v
y
w
ei
gh

t

CSRNet [24] 2018 68.2 115.0 10.6 16.0 266.1 397.5 135.4 207.4 121.3 387.8 16.26

CAN [111] 2019 62.3 100.0 7.8 12.2 212.2 243.7 107.0 183.0 106.3 386.5 18.10

BL [112] 2019 61.5 103.2 7.5 12.6 229.3 308.2 87.7 158.1 105.4 454.2 21.50

SFCN [113] 2021 64.8 107.5 7.6 13.0 214.2 318.2 102.0 171.4 105.7 424.1 38.60

UOT [114] 2021 58.1 95.9 6.5 10.2 - - 83.3 142.3 87.8 387.5 21.50

UEPNet [115] 2021 54.6 91.2 6.4 10.9 165.2 275.9 81.1 131.7 - - 26.12

STNet [116] 2022 52.9 83.6 6.3 10.3 162.0 230.4 87.9 166.4 - - 15.56

SRRNet [11] 2023 60.8 103.0 7.4 13.6 172.9 256.3 89.5 162.9 - - 66.14

PET [117] 2023 49.3 78.8 6.2 9.7 - - 79.5 144.3 74.4 328.5 20.90

RAQNet [118] 2024 59.0 101.2 9.0 15.4 177.1 247.6 106.5 186.1 - - 42.77

DLPTNet [35] 2024 58.4 95.0 9.3 15.6 - - 121.0 225.8 103.3 421.9 110.90

SDANet [25] 2024 54.9 90.4 7.1 12.0 104.1 154.4 107.3 195.5 - - 68.50

APGCC [32] 2024 48.8 76.7 5.6 8.7 154.8 205.5 80.1 136.6 71.7 284.4 18.68

L
A
-b
as
ed

MCNN [61] 2016 110.2 173.2 26.4 41.3 377.6 509.1 277.0 426.0 232.5 714.6 0.13

SANet [26] 2018 75.3 122.2 10.5 17.9 258.4 334.9 152.6 547.0 190.6 491.4 0.91

TDF-CNN [83] 2018 97.5 145.1 20.7 32.8 354.7 491.4 - - - - 0.13

ACSCP [79] 2018 75.7 102.7 17.2 27.4 291.0 404.6 - - - - 5.10

PCCNet [43] 2019 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3 - - 0.55

LCNet [84] 2019 93.3 149.0 15.3 25.2 326.7 430.6 - - - - 0.86

CCNN [50] 2020 88.1 141.7 14.9 22.1 - - - - - - 0.07

DCCNN [51] 2020 84.1 133.5 12.2 21.9 - - - - - - 0.07

Li et al. [67] 2024 63.8 110.1 7.1 12.1 239.6 332.9 90.4 217.8 - - 0.07

TinyCount [81] 2024 78.2 120.8 10.8 18.4 - - 134.7 223.3 - - 0.06

CPAS [78] 2024 64.5 102.9 7.1 10.9 115.0 139.6 94.2 164.4 - - 2.20

L
M
-b
as
ed

Yu et al. [97] 2019 78.5 126.4 12.8 22.1 299.1 391.8 - - - - 0.13

MobileCount [45] 2020 89.4 146.0 9.0 15.4 284.8 392.8 131.1 222.6 - - 3.40

PSCC+DCL [53] 2020 65.0 108.0 8.1 13.3 - - 108.0 182.0 - - 8.96

MDCount [92] 2021 84.2 130.7 11.8 19.2 103.1 158.1 111.3 203.0 - - 5.33

Lw-Count [55] 2022 69.7 100.5 10.1 12.4 239.3 307.6 149.7 238.4 90.2 311.8 0.07

MLRNet [94] 2022 82.6 130.2 10.6 15.9 265.8 389.1 127.4 222.4 - - 1.26

LSANet [96] 2022 66.1 110.2 8.6 13.9 - - 112.3 186.9 - - 0.20

LigMSANet [91] 2022 76.6 121.4 10.9 17.5 231.5 339.7 - - - - 0.63

LEDCrowdNet [52] 2023 74.6 118.6 8.9 14.1 195.6 282.2 122.6 199.4 - - 2.06

FPANet [46] 2023 70.9 120.6 8.8 15.5 159.5 218.4 108.9 197.6 97.1 372.8 7.80

GAPNet [5] 2023 67.1 110.4 9.8 15.2 202.8 246.9 118.5 217.2 174.1 514.7 2.85

Yi et al. [89] 2023 85.9 139.9 9.2 15.1 105.7 120.3 112.8 201.6 - - 4.58

PDDNet [93] 2023 72.6 112.2 10.3 17.0 - - 130.2 246.6 91.5 381.0 1.10

LMSNet [90] 2024 62.9 108.4 8.2 13.5 223.5 281.0 110.7 178.7 - - 0.73

K
D
-b
as
ed

1/4SAN+SKT [58] 2020 78.0 126.6 11.9 19.8 - - 157.5 257.7 - - 0.06

ReviewKD-VSKT [104] 2022 61.5 101.3 7.2 12.0 192.0 277.6 88.2 149.0 - - 2.20

DKD [57] 2023 64.4 103.0 7.4 12.7 210.3 283.8 91.7 150.1 - - 1.35

Repmobilenet [59] 2024 84.2 127.5 8.6 13.7 - - 122.5 216.2 - - 3.41

EdgeCount [109] 2024 69.0 118.6 8.1 13.7 - - 111.4 189.2 - - 1.32
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MAE and 120.8 in RMSE on ShanghaiTech Part A with only 0.06 M parameters. It399

reflects a compact structure with acceptable accuracy. However, in dense and complex400

scenes, such as those in UCF-QNRF and NWPU, most lightweight methods report401

MAE values above 100. This accuracy gap highlights the need for improved feature402

representation and generalization in lightweight designs.403

The efficiency of some state-of-the-art (SOTA) methods is verified on an RTX404

3080Ti, and the results are shown in Table 3. We mainly focus on methods with405

open-source code that were tested with a consistent evaluation standard and unified406

input resolution of 576×768. The results show that lightweight models provide clear407

advantages in inference speed and real-time performance. TinyCount [81] requires408

only 3.37 ms per inference and achieves 296.65 FPS. EffCC-Lite0.25 [60] reaches409

731.49 FPS and demonstrates strong potential for use in real-time applications. Even410

1/4CSRNet+SKT [58], with a slightly larger size, attains 309.21 FPS and balances411

compression with speed. In contrast, most heavyweight models suffer from higher412

latency despite better accuracy. SRRNet [11] and SASNet [119] record inference times413

of 29.45 ms and 45.42 ms, with FPS below 35 FPS. These delays reduce their suitability414

for real-time applications.415

Overall, Tables 2 and Tables 3 highlight a core challenge in current crowd counting416

research: heavyweight models lead in accuracy but pose deployment challenges due to417

high computational cost, whereas lightweight models offer superior speed and parameter418

efficiency, but they struggle to reach the accuracy of heavyweight networks. Future work419

should aim to reduce model complexity and improve inference speed without sacrificing420

accuracy, to achieve scalable and deployable solutions in real-world applications.

Table 3: Comparison of efficiency across different methods.

Methods Params (M) ↓ FLOPs (G) ↓ Time (ms) ↓ FPS ↑

Heavyweight

SRRNet [11] 66.14 162.09 29.45 33.96

RAQNet [118] 42.77 250.86 36.83 27.15

SASNet [119] 38.90 393.16 45.42 22.02

Lightweight

GAPNet [5] 2.85 3.29 4.27 234.40
1
4 CSRNet+SKT [58] 1.12 12.92 3.23 309.21

EffCC-Lite0.25 [60] 0.23 1.01 1.37 731.49

TinyCount [81] 0.06 1.37 3.37 296.65

421

5. Challenging and Research Directions422

5.1. Challenging423

In the design and application of lightweight networks, researchers encounter several key424

challenges that significantly impact both model performance and practical utility.425
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The balance between accuracy and lightweight design. Lightweight networks426

offer significant advantages in reducing computational overhead, but they often come at427

the cost of accuracy, especially in high-density, detail-sensitive crowd counting tasks. As428

shown in Table 2, SRRNet [11] performs well across multiple datasets. It achieves good429

accuracy with MAE values of 60.8 for Part A and 7.4 for Part B. However, the parameters430

are 66.14 M, which results in a high computational cost. In contrast, methods like431

TinyCount [81] have a much smaller parameter size of only 0.06 M. While this results in a432

slight drop in accuracy (Part A MAE of 78.2), it improves inference speed (296.65 in FPS433

as shown in Table 3). This trade-off highlights the advantages of lightweight methods in434

real-time and resource-constrained environments, particularly for edge computing and435

embedded devices. Therefore, one of the core challenges for lightweight crowd counting436

networks remains achieving efficient and robust performance while minimizing accuracy437

loss in practical applications.438

Scene complexity and model robustness. In practical crowd counting applications,439

environmental factors, e.g., scene variations, occlusions, background noise, and440

varying crowd densities degrade model performance. While lightweight networks441

show advantages in computational efficiency, they often exhibit poor performance in442

robustness in complex environments, especially in high-density crowds and dynamic443

backgrounds. The QNRF dataset demonstrates the effect of scene diversity and crowd444

density on model performance. This dataset covers diverse crowd arrangements and445

environments. It requires the model to be highly adaptable to these variations. As shown446

in Table 2, although RAQNet [118] performs well in MAE (106.5) and RMSE (186.1) on447

the QNRF dataset, the inference times (36.83 ms, as shown in Table 3) is much longer448

due to the large parameters. In contrast, the lightweight network GAPNet [5] offers449

faster inference times (4.27 ms) but struggles with robustness in complex environments,450

such as occlusion and high-density crowds. Therefore, future research should focus on451

improving the robustness of lightweight networks across diverse scenarios, especially in452

handling environmental changes like complex backgrounds and lighting variations.453

Lack of generalization ability. Generalization remains a significant challenge in the454

research of lightweight crowd counting models. Existing lightweight models typically455

rely on large labeled datasets for training and perform well on standard benchmarks.456

However, in practical applications, their generalization ability is limited due to457

differences in data distribution and environmental changes (such as location, weather,458

and density) in real-world scenarios. These factors lead to unstable performance459

in complex and dynamic environments. Additionally, unsupervised methods based460

on large-scale pre-trained models, such as Contrastive Language-Image Pretraining461

(CLIP) [120], can perform class-agnostic counting but their large parameters and lack462

of spatial awareness make them less effective in real-world applications. For example,463

Chen et al. [6] demonstrated that while the CLIP model can count objects based on464

textual instructions, it lacks sensitivity to object locations and focuses more on global465

content rather than precise positioning. Furthermore, CLIP [120] typically freezes its466

pre-trained encoders and ignores misalignments between modalities, which reduces its467
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effectiveness in counting tasks. Future work should focus on enhancing the generalization468

of lightweight crowd counting models to ensure high accuracy and stability across various469

environments.470

5.2. Research Directions471

To further enhance the performance and practicality of lightweight networks, future472

research can explore the following directions.473

Optimized lightweight network compression technology. At present, lightweight474

models often reduce computational cost and memory usage through pruning and475

quantization. However, these techniques usually lead to a loss in accuracy. Future476

studies can focus on structure-aware pruning methods, such as channel and block477

pruning, as well as mixed-precision quantization strategies. For example, HAWQ-478

V3 [121] applies second-order information to implement mixed-precision quantization.479

This method significantly lowers model complexity while maintaining accuracy. Lw-480

Count [55] focuses on crowd counting and redesigns the network with lightweight481

components. It achieves high compression rates in parameters and FLOPs with little482

precision loss. Further improvements could come from considering spatial density483

patterns and regional differences in weights. This enables tailored compression strategies484

for better performance in dense crowd settings.485

Dynamic adaptation to different environments. Changes in data distribution,486

such as differences between urban and rural areas, daytime and nighttime, or occlusion487

and clear views, often challenge the generalization of crowd counting models. To improve488

performance under these challenging environments, future research should explore489

domain adaptation and transfer learning methods for lightweight models. Methods like490

adversarial training and feature alignment can help bridge the gap between source and491

target domains. Nguyen et al. [122] proposed a self-training method that combines492

source domain labels with target domain unlabeled samples. It applies adversarial493

training and entropy map minimization to improve generalization in cross-domain494

settings. Additionally, Meta-learning methods like dynamic β-MAML [123] allow for495

rapid model adaptation to new domains. Moreover, Generative Adversarial Networks496

(GANs) can generate domain-invariant features or synthetic data and further improve497

model adaptability. For example, ASNet [124] employed adversarial learning with dual498

discriminators to minimize domain gaps and improve counting accuracy in complex499

environments. In future work, it is suggested to explore the practicality of these methods500

and address the domain adaptation challenges faced by lightweight crowd counting501

models.502

Combination of self-supervised and unsupervised learning. In crowd counting503

tasks, lightweight models often face challenges such as high annotation costs and limited504

generalization due to the scarcity of labeled data. Future research should explore the505

combination of self-supervised and unsupervised learning to improve model performance506

and cross-domain generalization with limited labeled data. Semi-supervised learning507
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methods combine small amounts of labeled data with large unlabeled datasets to enhance508

model learning. For example, Lin et al. [125] proposed a method using pixel-level509

density regression and alternating consistency self-supervision to improve both accuracy510

and generalization. Unsupervised methods, such as the approach by Liu et al. [126],511

generate pseudo-labels to further enhance model capabilities. Their transfer learning512

approach also improves adaptability and cross-domain performance using unlabeled513

data. Additionally, combining self-supervised and unsupervised strategies, such as514

using Generative Adversarial Networks (GANs) to generate pseudo-labels, could further515

improve feature learning from unlabeled data. However, balancing higher cross-domain516

adaptability with model efficiency and stability in complex environments remains a key517

challenge for future research.518

Hardware optimization and energy efficiency improvement. As the demand519

for lightweight crowd counting networks increases on edge devices and embedded520

systems, efficient inference and low power consumption become critical. It is crucial521

in resource-constrained applications like intelligent surveillance, autonomous driving,522

and drones. Future research should focus on optimizing the performance of lightweight523

networks on specific hardware platforms through hardware/software co-design. For524

instance, the Quantized Deconvolution Generative Adversarial Network (QDCGAN)525

model can be deployed on hardware platforms like FPGAs to achieve efficient inference526

while balancing throughput and resource usage. Alhussain et al. [127] proposed a527

hardware/software co-design method that implements QDCGAN on FPGA. It utilizes528

scalable dataflow architectures to improve inference speed while reducing resource529

consumption. This approach offers high parallelism and is effective for computationally530

intensive applications such as GANs, especially in edge computing scenarios. Future531

research should further explore the application of these technologies to enhance532

lightweight crowd counting models. Specifically, more future work is expected to533

optimize the balance between low power consumption and high performance across534

various hardware platforms.535

6. Conclusion536

With the rapid advancement of deep learning, crowd counting technology has made537

significant strides across various fields, particularly in accuracy and robustness.538

However, as model complexity increases, the demand for computational resources and539

training data has become a bottleneck in practical applications. Thus, optimizing540

computational efficiency while maintaining high accuracy has emerged as a critical541

challenge in the field of crowd counting. To address this issue, lightweight crowd542

counting methods have increasingly become a focal point of research. This paper543

presents a review of recent progress in lightweight crowd counting methods. We classify544

these methods into three main categories: lightweight architecture-based networks,545

lightweight module-based networks, and knowledge distillation-based networks. For546

each category, we detail the design principles and introduce key representative methods.547
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Another key contribution of this work is the analysis of current SOTA lightweight crowd548

counting networks, which clarifies the trade-off between accuracy and computational549

efficiency. Heavyweight models offer higher accuracy but come with a significant550

computational burden. Lightweight models offer significant advantages in inference551

speed and parameter efficiency. These advantages make them well-suited for real-552

time applications with limited resources. However, accuracy remains a challenge for553

these models. Although current optimization techniques have improved the precision of554

lightweight models to some extent, further researches are expected to enhance accuracy555

without compromising efficiency. Finally, we summarize current challenges and suggest556

potential directions for future research.557
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