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Abstract
Counting the number of people in crowded scenarios is a crucial task in video surveillance and urban security
system. Widely deployed surveillance cameras provide big data for training, a compelling deep learning-based
counting network. However, large-scale variations in dense crowds are still not entirely solved. To address
this problem, we propose a spatial-frequency attention network (SFANet) for crowd counting in this article. A bot-
tleneck spatial attention module is built to emphasize features in various spatial locations and select a region
containing individuals adaptively in the spatial domain. As a complementary, in the frequency domain, a mul-
tispectral channel attention module is adopted to obtain a more complete set of frequency components for rep-
resenting each channel. The two attention modules are combined to focus on the discriminative region and
suppress the misleading information by their mutual promotion. Experimental results on five benchmark
crowd data sets demonstrate that the SFANet can achieve the state-of-the-art performance in terms of accuracy
and robustness.

Keywords: crowd counting; density estimation; spatial-frequency attention; convolutional neural network

Introduction
Crowd counting aims to estimate the total number
of people presented in a crowded scene. Owing to its
wide range of real-world applications, for example,
traffic control1 and public safety,2 crowd counting
has drawn much attention. The widely deployed sur-
veillance cameras provides large-scale data to train a
compelling crowd counter, which significantly boost
the performance in recent years. However, various
challenges, such as scale variations, perspective distor-
tion, serious occlusion, and nonuniform distribution,
hinder the further performance improvement of cur-
rent methods.

To tackle the aforementioned problems, various
methods have been proposed in recent years. Early
works utilize detection and regression methods for
crowd counting.3,4 However, these two methods per-
form unsatisfactorily in congested scenes.5,6 With the
raising of deep learning, an increasing number of Con-
volution Neural Networks (CNNs)-based counting
methods have been proposed.7,8 These approaches

conducted crowd counting by learning density maps
in an end-to-end manner. Meanwhile, inspired by the
success of attention mechanism in visual tasks,9,10 the
attention mechanism has been widely explored for
crowd counting.11–13 Although the aforementioned
methods have been proposed for crowd counting,
they are still helpless for scale variations. The scale var-
iations are caused by camera perspective distortion,
which results in different distances between heads
and cameras. Figure 1 depicts some congested scenes
in which the crowds are suffered from scale variations.

In this article, we propose a spatial-frequency atten-
tion network (SFANet) to solve the large-scale varia-
tions in dense crowds scenes. The proposed method
consists of two attention units, which separately handle
information in spatial and frequency domains, whereas
their combinations proved each other with the comple-
mentary information to exploit the inherent synergy to
felicitate a precious crowd counting. Specifically, in the
spatial domain, a bottleneck spatial attention (BSA)
module is built to emphasize features in various spatial
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locations and select a region containing individuals
adaptively. Thus, it alleviates the mistaken estimation
for background regions. In the frequency domain, a
multispectral channel attention (MSCA) module is
designed to consider a more complete set of frequency
components for representing each channel. In this case,
the people rather in the crowd can be recognized accu-
rately. The contributions of the proposed method can
be generally summarized as follows:

1. We propose a crowd counting network with
two elaborately designed attention modules, BSA
module and MSCA module, to capture more in-
formation in spatial and channel dimensions.

2. We analyze crowd counting in the spatial and
frequency domain simultaneous to exploit the in-
herent synergy. In spatial domain, a larger receptive
field is utilized to determine the person region.
Meanwhile, multiple frequency components are
used to identify people in the frequency domain.

3. We perform comprehensive experiments on five
crowd benchmark data sets with other state-of-
the-art methods to demonstrate the superiority
of the proposed method in terms of both accuracy
and robustness.

Related Work
Progressive improvements in crowd counting have
been made from traditional methods3,5 to CNN-based
method.14,15 In this section, we mainly retrospect these
two methods.

Traditional approaches
Traditional approaches can be mainly divided into two
categories: detection-based and regression-based ap-
proaches.7,8 The detection-based method mainly em-
ploys a sliding-window-like detector to detect the
body or head of each individual, and then trains a clas-
sifier to determine the positive instances.16 Li et al.17

employed a Histogram of Oriented Gradient-based

head-shoulder detector to count people in foreground
regions. Ge and Collins18 used a Bayesian marked
point process to detect people. However, the method
performed unsatisfactory in dense crowds. The
detection-based approaches usually perform well in
sparse scenes, but the performance degrades seriously
in the high-density crowd scenarios.7

To deal with the problem of counting in high-
density crowd scenarios, the regression-based ap-
proaches have been proposed. The regression-based
approaches mainly learn a mapping from an image to
the count. They first extract global or local features,
and leverage a regressor to learn a mapping for
crowd counting. Lempitsky and Zisserman19 regressed
a density map to leverage spatial distribution informa-
tion, which learned a linear mapping between local fea-
tures and density maps. Chan and Vasconcelos20

introduced a prior distribution on the linear function
to explain the Poisson regression based on Bayesian.
Although the two traditional approaches achieve prom-
ising results, they always ignore spatial information.

CNN-based approaches
Recently, benefiting from the powerful ability of fea-
ture expression and computing resources, the CNN-
based methods7 have achieved great success in crowd
counting. Zhang et al.21 presented multicolumn CNN
(MCNN) to solve the scale variations by increasing
the receptive field. Similarly, a switch-CNN22 employed
multicolumn structure to train independent CNN re-
gressors and selected the best classifier for estimation.
However, the multicolumn structures usually lead to
much information redundancy and consume a lot
of parameters. To address these problems, Li et al.15

employed a single-column network architecture with
cascaded dilated convolutional layers to extract multi-
scale features. More recently, many advanced ap-
proaches have exploited multi-context information to
deal with the scale variation problem. Cheng et al.23

FIG. 1. The scale variations in congested scenes. The green box denotes the head region.
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proposed a decoupled two-stage counting network that
sequentially regresses the probability map and counter
map.

Inspired by the human visual attention, attention
mechanisms have gained comprehensive attentions in
the field of deep learning.24 Attention mechanism can
be regarded as a process of dynamic weight adjustment.
Some works have incorporated attention mechanisms
in crowd counting to enhance the performance in re-
cent years. Liu et al.25 combined the visual attention
mechanism and multiscale deformable convolutional
scheme into a cascading framework to provide regions
and congestion degrees for the latter density map esti-
mator. Sindagi and Patel26 employed the spatial atten-
tion module and global attention module to enhance
the features adaptively. Jiang et al.27 proposed an atten-
tion scaling network to alleviate the counting perfor-
mance differences in different regions. Unlike the
aforementioned attention-based methods, which only
use the attention mechanism in the spatial domain,
we build a hybrid-attention model to capture more in-
formation in the spatial domain and in the frequency
domain.

The Proposed Approach
Overview
Considering the scale variations in extremely dense
crowds, it is crucial to determine the discriminative
area of a person, regardless of the view point and per-
spective distortion. To this end, we propose the SFANet
to highlight the discriminative information for crowd
counting by adaptively adjusting the weights despite
the scale variation. To precisely locate the region of
people to alleviate the mis-estimation caused by back-
ground region, we first propose the BSA module.

Moreover, as pointed out in Qin et al.,9 only the lowest
frequency information is preserved and the high-
frequency components are discarded in the traditional
channel attentions. To overcome this inherent draw-
back, we propose the MSCA module to take the advan-
tage of the high-frequency components to represent the
details of a person. The architecture of the proposed
method is illustrated in Figure 2.

The proposed SFANet takes a pretrained ResNet-50
as feature extractor. Then, the feature maps are fed into
BSA units to generate a two-dimensional spatial map
Ms 2 R1 · H · W , which adaptively adjusts weight in spa-
tial dimension. It can be represented by

Fs = Os(F) � F, (1)

where Fs is the enhanced feature map. Os( � ) denotes
the function of BSA module and � is the element-
wise multiplication, and F is the output of feature ex-
tractor. Furthermore, the feature map Fs is refined by
MSCA module to take the advantage of the informa-
tion in the frequency domains Vc 2 RC · 1 · 1 in channel
dimension. The refined feature map can be written as

Fc = Oc(Fs) � Fs, (2)

where Fc is the optimized feature map and Oc( � ) de-
notes the function of MSCA module. Finally, the fea-
ture map Fcs 2 RC · H · W is obtained by the sum Fs

and Fc.

Fcs = Fs � Fc, (3)

where � is a sum operation. In this case, Fcs can accu-
rately determine the discriminative area of a person.

FIG. 2. The architecture of the proposed SFANet. A feature map extractor is designed to extract feature. Two
attention modules, BSA and MSCA, are built to adjust weights in spatial and channel dimension, respectively.
These two types of feature maps are concatenated and produces a one-channel predicted density map
through upsample operation. BSA, bottleneck spatial attention; MSCA, multispectral channel attention.
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BSA module
Spatial attention devotes to highlight or restrain fea-
tures in various spatial locations by producing a spatial
attention map. To select the head regions, more con-
textual information needs to be leveraged, thus a larger
receptive field is required. To enlarge the receptive
field, a BSA unit28 is built in this article. In BSA unit,
the dilated convolution is adopted to construct a repre-
sentative feature map, which ensures that there is a
large enough receptive field to select a discriminative
area. Beyond that, the BSA is designed as a bottleneck
structure to reduce the computational costs. The archi-
tecture of the BSA unit is shown in Figure 3.

First, to enable the feature map to be more compact,
we apply a 1 · 1 convolution upon the extracted feature
map F to reduce the channel dimension to C=r, where r
represents the reduction ratio (r is set to 16 in this
study). Subsequently, two 3 · 3 dilated convolutions
are employed to take more contextual information
into account. Finally, the channel of the feature map
is further refined to one dimension with a 1 · 1 convo-
lution, and a spatial attention map Ms 2 R1 · H · W is
obtained. The BSA module can be formulated as

Ms(X) = BN(Conv1 · 1
2 ((DC3 · 3

1, 2 (Conv1 · 1
1 (X))))), (4)

where BN represents the batch normalization opera-
tion. Conv1 · 1

2 and Conv1 · 1
2 are designed for channel

reduction. DC3 · 3
1, 2 represents the two dilated convolu-

tion layers.

MSCA module
Channel attention aims to represent and evaluate the
significance of each channel using a weight. From the

perspective of the frequency domain, the domi-
nated component of an image is low frequency. It
forms the basic gray level of the image. Whereas the
intermediate-frequency information forms the main
edge structure of the image. In contrast, the high-
frequency information forms the edges and details of
the image.

To identify a person accurately in the discrimina-
tive region, all frequency components are expected
to be exploited, not just the lowest one, as mentioned
in Jiang et al.27 To this end, we hereby employ the
MSCA module, which leverages the discrete cosine
transform (DCT) upon the traditional Global Average
Pooling module, to sententiously consider information
in all frequencies. The DCT is defined as

F(u, v) =
XH

i = 1

XW
j = 1

f (i, j)cos
(iþ 0:5)p

H
h

� �
(jþ 0:5)p

W
w

� �
,

(5)

where F(i, j) represents the two-dimensional DCT fre-
quency spectrum and f (i, j) is the input. H and W de-
note the height and width of f (i, j). The architecture of
the MSCA is shown in Figure 4.

The MSCA module can be represented as

Vi = DCTi � Xi,

Mc(Fs) = Sigmoid(Fc(Cat(Vi))),

where Vi 2 RC¢ · 1 · 1, i 2 1, 2, � � � , nf g, C¢ = C
n de-

notes a channel vector. � denotes the element-wise
multiplication. DCTi is a selected frequency compo-
nent (referred to DCT bases in this article) by the cri-
teria9 and Xi represents the part that is split along the

FIG. 3. Architecture of BSA module. It adopts a 1 · 1 convolution to reduce channels, and two dilated
convolutions to enlarge the receptive fields. Finally, the spatial attention map is refined by a 1 · 1 convolutional
layer.
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channel dimension by the input Fs. FC( � ) is the full
connection operation. By this means, the proposed
method can take the information in all the frequencies
to produce a refined feature. Thus, the feature map Fc

can be more accurate in identifying individuals.

Loss function
We use L2 loss function to minimize the root-mean-
square error (RMSE) between the ground truth (GT)
and the predicted density map. Given an image Ii and
the learnable parameter h of SFANet, the goal is to
minimize the following loss function:

Loss =
1
N

XN

i = 1

jEst(Xi, h)�GTij jj22, (7)

where N is the batch size of the input images in a mini-
batch, Est(Xi, h) denotes the estimated density map,
and GTi is the corresponding GT.

Density map generation
The GT density map M(x) is generated by the geometry-
adaptive Gaussian kernel Gr

21 and convolving with a
delta function. The formula is defined as follows:

M(x) =
XN

i = 1

d(x� xi) · Gri (x), (8)

where N is the number of head annotations, x corre-
sponds to a pixel in the image, and xi represents the co-
ordinates of the head annotation. The delta function
d(x� xi) is employed to depict a head. It is equal to 1
when the pixel i is in a head region.

Experiments and Analysis
Implementation details
In this study, the training and evaluation are imple-
mented on an NVIDIA RTX3090 GPU using PyTorch
framework.29 We employ Adam30 as the optimizer.
The learning rate is initialized as 10�5 and reduced
to · 0.995 per epoch to minimize the training loss.

Evaluation metrics
Following the previous works,15,31 the mean absolute
error (MAE) and RMSE are adopted to measure the
performance of the proposed method. The MAE and
RMSE are formulated in Equations (9) and (10),
respectively.

FIG. 4. Architecture of the MSCA module. The high-level feature Fs is split into n parts, on which the
multiplication of each part and DCT bases is applied to obtain the optimized feature Vi. Finally, a channel
representational vector is generated by the concatenation operation. DCT, discrete cosine transform.

Table 1. Experimental results on the ShanghaiTech data set

Method

Part_A Part_B

MAE RMSE MAE RMSE

GP42 120.4 179.4 12.5 18.3
MCNN21 110.2 173.2 26.4 41.3
CMTL31 101.3 152.4 20.0 31.1
TDF-CNN43 97.5 145.1 20.7 32.8
Switching-CNN22 90.4 135.0 21.1 30.1
CP-CNN44 73.6 106.4 20.1 30.1
BSAD45 90.4 135.0 20.2 35.6
TDF-CNN43 97.5 145.1 20.7 32.8
SaCNN46 86.8 139.2 20.7 32.8
A-CCNN47 85.4 124.6 11.0 19.0
MATT48 80.1 129.4 11.7 17.5
MRA-CNN34 74.2 112.5 11.9 21.3
PCC-Net30 73.5 124.0 19.2 31.5
DNCL33 73.5 112.3 18.7 26.0
SFANet(ours) 71.7 122.5 8.6 13.7

The best result is in bold.
MAE, mean absolute error; MCNN, multicolumn CNN; RMSE, root-

mean-square error; SFANet, spatial-frequency attention network.
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MAE =
1
N

XN

i = 1

Cpred
i �Cgt

i

��� ���, (9)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN

i = 1

Cpred
i �Cgt

i

��� ���2
vuut , (10)

where N is the total number of testing images, Cpred
i is

the predicted count value of the ith testing image, and
Cgt

i is the corresponding GT count.

Data augmentation
To avoid the risk of overfitting and ensure the network
being sufficiently trained, we augment the training data
with random cropping and horizontal flipping instead
of vertical flipping, because the vertical flipping reverse
the positions of the head and feet, which is unfit for
counting accuracy. Following the principle in C3,29

we constrain the input size to guarantee that they are di-
visible by 16. For ShanghaiTech, University of Central
Florida-Qatar National Research Fund and University
of Central Florida_Crowd Counting_50 data sets, we
set the height and width of input images to the dimen-

sion of 768 · 1024. For WorldExpo’10 and NWPU-
Crowd, we set the input images to 576 · 720 and
576 · 768, respectively. This constraint ensures that
some max-pooling layers could output expected size.

Performance on ShanghaiTech data set. The Shang-
haiTech data set21 is one of the most popular crowd
counting data sets. It contains 1198 images with
330,165 annotated persons. This data set is divided

FIG. 5. Visually qualitative analysis of the ShanghaiTech data set. The top row shows the input images from
Part_(A) and Part_(B), the middle row shows the ground truth, and the bottom row shows the estimated
density map.

Table 2. Experimental results on the UCF-QNRF data set

Methods MAE RMSE

Zhang et al.36 467.0 498.5
Idress et al.6 315.0 508.0
MCNN21 277.0 509.1
CMTL31 252.0 514.0
Switching-CNN22 228.0 445.0
PCCNet32 148.7 247.3
CL35 132.0 191.0
CSRNet15 129.0 209.0
DENet49 121.0 205.0
LSC-CNN50 120.5 218.2
HA-CCN26 118.1 180.4
DUBNet51 116.0 178.0
DADNet14 113.2 189.4
SFANet(ours) 111.3 195.5

The best result is in bold.
UCF-QNRF, University of Central Florida-Qatar National Research Fund.
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into two subsets, Part_A and Part_B. Part_A contains
482 images (300 images for training and 182 images
for testing) randomly collected from internet. Part_B
includes 716 images (400 images for training and 316
images for testing) captured from a congested street
in Shanghai. By contrast, the images in Part_B have a
smaller intra-data set divergence. The experimental re-
sults on the ShanghaiTech data set are shown in
Table 1.

It can be seen that the proposed method scores 71.7
and 122.5 in terms of MAE and RMSE on Part_A sub-
data set. Especially, it ranks the first place in MAE and
improves the MAE by 2.5% compared with the second-
best method, PCC-Net32 and DNCL.33 For Part_B, the
proposed method scores 8.6 and 13.7 in MAE and
RMSE, which both outperform the other competitors.
Particularly, it reduces the MAE and RMSE by 27.7%
and 35.7% compared with Multi-Resolution Attention-
CNN,34 which also leverages attention module. Some
examples of visualization are shown in Figure 5. It
shows that the proposed method performs well in
the scenarios with scale variations.

Performance on UCF-QNRF data set. The UCF-QNRF
data set35 consists of 1535 high-resolution images with

1,251,642 individuals. The training set is composed of
1201 images and the testing set contains 334 images.
Particularly, it has a wider variety of scenes compared
with the ShanghaiTech data set. Comparative results
are shown in Table 2. It shows that the SFANet scores
111.3 in MAE, which ranks the first place, and 195.5 in
RMSE, which ranks the fifth place. The experimental
results indicate that the proposed method is superior
to other methods in MAE and remains competitive in

FIG. 6. Visually qualitative analysis of the UCF-QNRF data set. The first, second, and third row show the input
images, ground truth density maps, and estimated density maps, respectively. UCF-QNRF, University of
Central Florida-Qatar National Research Fund.

Table 3. Experimental results on the UCF_CC_50 data set

Methods MAE RMSE

MATT48 355.0 550.2
DR-ResNet52 307.4 421.6
CSRNet15 266.1 397.5
ic-CNN53 260.9 365.5
SCAR40 259.0 374.0
HA-CNN26 256.2 348.4
DM-Count54 211.0 291.5
AMSNet55 208.4 297.3
ADSCNet41 198.4 267.3
AMRNet56 184.0 265.8
TopoCount57 184.1 258.3
D2CNet23 182.1 254.9
LibraNet58 181.2 262.2
SFANet (ours) 179.5 231.5

The best result is in bold.
UCF_CC_50, University of Central Florida_Crowd Counting_50.
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RMSE. The qualitative results for sample images from
the UCF-QNRF data set is illustrated in Figure 6. It
proves that the SFANet performs well under large-
scale variations.

Performance on UCF_CC_50 data set. The UCF_
CC_50 data set6 contains 50 images with 63,947 anno-
tated heads, which are collected from internet. The data
set consists of packed scenes and the numbers of anno-
tations range from 94 to 4543. The average annotations
of one image reach 1280. It is a very challenging data
set for the limited training samples and high-density
crowds. The experimental results on the ShanghaiTech
data set are shown in Table 3. It shows that the pro-
posed SFANet scores 179.5 in MAE and 231.5 in
RMSE. These two indicators surpass all the other com-
petitors. Specifically, compared with the Hierarchical
Attention-CNN,26 which also adopts the attention
mechanism in crowd counting, the proposed SFANet
reduces the score of MAE by 29.9%, and RMSE by
33.6%, respectively. The visualization of the estimated
crowd density maps with counting number is depicted
in Figure 7. It proves that the estimated crowd density
maps and counting values are approximate to the GT
in high-density crowd scenario.

Performance on WorldExpo10 data set. The Worl-
dExpo10 data set36 is a large-scale crowd counting
data set collected from Shanghai 2010 WorldExpo. It
contains 3980 images, among which 3380 frame anno-
tations are used for training, whereas 600 frames are
used for testing. Since five different regions of interest
(ROI) and the perspective maps are provided for the
test scenes (S1–S5), we count persons within the ROI
area following the general criterion.37,38 The perfor-
mance of the proposed SFANet against the state-of-

FIG. 7. Visually qualitative analysis of the UCF_CC_50 data set. The first, second, and third row show the input
images, ground truth density maps, and estimated density maps, respectively. UCF_CC_50, University of
Central Florida_Crowd Counting_50.

Table 4. Experimental results on the WorldExpo’10 data set

Methods Scene 1 Scene 2 Scene 3 Scene 4 Scene 5
MAE

(Avg.)

DCL59 1.8 16.2 9.2 25.0 2.8 11.0
C-CNN60 3.8 20.5 8.8 8.8 7.7 9.9
PCC Net32 1.9 18.3 10.5 13.4 3.4 9.5
DNCL33 1.9 12.1 20.7 8.3 2.6 9.1
ACM-CNN61 2.4 10.4 11.4 15.6 3.0 8.6
RPNet62 2.4 10.2 9.7 11.5 3.8 8.2
CRNet63 2.0 10.6 12.2 7.8 2.7 7.1
DENet49 2.8 10.7 8.6 15.2 3.5 8.2
SDANET64 2.0 14.3 12.5 9.5 2.5 8.1
ANF65 2.1 10.6 15.1 9.6 3.1 8.1
MRA-CNN34 2.4 11.4 9.3 10.5 3.7 7.5
CAT-CNN66 2.2 9.8 10.2 11.2 2.5 7.2
SFANet(ours) 0.9 12.0 8.5 10.0 2.5 6.8

The best result is in bold.
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the-art (SOTA) methods are shown in Table 4. It shows
that the proposed SFANet performs best in Scenes 1, 3,
and 5. Meanwhile, it achieves the best result in average
MAE, with a reduction of 5.5% compared with the
second-best method. Figure 8 shows some estimated
results in the WorldExpo10 data set. One can see that
the proposed method can accurately reflect the actual
crowd distribution in all the images.

Performance on NWPU-Crowd data set. The NWPU-
Crowd data set39 is a new but challenging data set. It is
composed of 5109 images with 2,133,375 head annota-
tions, in which 3109 images for training, 500 images for
validation, and 1500 images for testing. The data set
has more challenges over other data sets such as high
resolution, large density range (from 0 to 20,033),
and mass negative samples. The quantitative results
for NWPU-Crowd are listed in Table 5. It shows that
the proposed SFANet scores 107.9 in MAE, which
performs best, and 404.1 in RMSE, which ranks
third, respectively. Especially, compared with Spatial/
Channel-wise Attention Regression,40 which also adopts
attention mechanism, the proposed SFANet reduces the
score of RMSE by 18.4%. The visualization of estimated
maps with counting numbers is shown in Figure 9. It
demonstrates that the proposed method performs well
in the dense crowds with the accurate estimation.

Ablation study
To further verify the effectiveness of critical compo-
nents, that is, BSA and MSCA proposed in SFANet, a

series of ablation studies are conducted. The counter-
parts are denoted as follows:

1. ‘‘baseline’’ represents the basic model that only
adopt ResNet-50.

2. ‘‘baseline+BSA’’ refers to the addition of the BSA
module to the ‘‘baseline.’’

3. ‘‘baseline+MSCA’’ denotes the addition of the
MSCA module to the ‘‘baseline.’’

4. ‘‘baseline+MSCA BSA’’ represents MSCA mod-
ule is connected in series with BSA module as
MSCA in front and BSA behind.

5. ‘‘baseline+MSCAjjBSA’’ denotes that MSCA and
BSA are added to baseline in parallel.

6. ‘‘baseline+BSA_MSCA’’ represents the proposed
SFANet.

FIG. 8. Visually qualitative analysis of the WorldExpo’10 data set. The first, second, and third row show the
input images, ground truth density maps, and estimated density maps, respectively.

Table 5. Experimental results on the NWPU-Crowd data set

Methods MAE RMSE

TinyFaces67 272.4 764.9
MCNN21 232.5 714.6
SANet68 190.6 491.4
A-CCNN47 176.5 520.6
ADMG69 152.8 907.3
AutoScale70 122.6 468.3
CRSNet15 121.3 378.8
PCC-Net32 112.3 457.0
SCAR40 110.0 495.3
TransCrowd71 117.7 451.0
SFANet(ours) 107.9 404.1

The best result is in bold.
NWPU, Northwestern Polytechnical University.
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Following the previous works,15,41 we employ
ShanghaiTech Part_A as the benchmark for the abla-
tion study. The overall quantitative performance is
shown in Table 6. It indicates that the two critical com-
ponents, BSA module and MSCA module, contribute
to the substantial improvement of the baseline method
in terms of both MAE and RMSE. The MSCA module
performs better in MAE (75.5) and RMSE (129.1) than
that of the BSA module (76.2 and 133.0).

Analysis on connection mode, the ‘‘baseline+MSCA_
BSA’’ module has a side effect. Both the ‘‘baseline+
MSCA_BSA’’ module and the ‘‘baseline+BSA_MSCA’’

module enhance the baseline, but the latter is better.
Theoretically, crowd counting can be divided into
two steps. The first step is to select a discriminative
area, and the second step is to count the number of
heads in this area. BSA module completes the first
step, and MSCA module completes the second step.
Therefore, the latter is better than the former. The
final SFANet boosts the baseline significantly by 5.9%
and 5.0% in terms of MAE and RMSE, respectively.

Visualization of analysis results are demonstrated
in Figure 10. The BSA module guarantees the accu-
rate location of heads, as depicted in the red box in
Figure 10d. The MSCA module can alleviate the error
estimation for background regions, as depicted in the
green box in Figure 10e. Different connection mode
shows different performances. The ‘‘baseline+MSCA_
BSA’’ mode presents unsatisfactory results, as depicted
in the yellow box in Figure 10f. Owing to the re-
verse sequence of the two modules, the identification
area is wrongly selected. The ‘‘baseline+MSCAkBSA’’
(Fig. 10g) and ‘‘baseline+BSA_MSCA’’ (Fig. 10h) mode
boost the estimation accuracy, the former results in
the final overestimate due to overfitting, with the latter
being more effective.

FIG. 9. Visually qualitative analysis of the NWPU-Crowd data set. The first, second, and third row show the
input images, ground truth density maps, and estimated density maps, respectively. NWPU, Northwestern
Polytechnical University.

Table 6. Ablation analysis of the key components in SFANet
on ShanghaiTech Part A data set

Methods MAE RMSE

Baseline 77.9 134.4
baseline+BSA 76.2 133.0
baseline+MSCA 75.5 129.1
baseline+MSCA_BSA 105.6 169.1
baseline+MSCAjjBSA 75.2 128.6
baseline+BSA_MSCA 71.7 122.5

The best result is in bold.
BSA, bottleneck spatial attention; MSCA, multispectral channel atten-

tion.
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Conclusion
The scale variation in crowd scenario is a primary deg-
radation factor in crowd counting, which degrades the
accuracy of the crowd estimation. To address this prob-
lem, we propose a SFANet, which consists of a BSA
module and an MSCA module. The BSA module is
built in the spatial domain to guarantee the accurate lo-
cation of heads, whereas the MSCA module is built in
frequency to accurately identify a person with multiple
frequency components. These two attention modules
highlight the crucial information in spatial and channel
spaces in a mutual-promotion manner. Comprehen-
sive experiments on five benchmark data sets prove
that the SFANet achieves compelling performance on
accuracy and robustness compared with the SOTA
methods.
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