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Abstract
IoT has been overwhelmingly empowered by the rapid development of big-data ecosystems, such as remote sensing
technology which runs all the time in obtaining accurate and high-quality images to facilitate the subsequent image
processing and content analysis in embedded devices. Object counting, which aims to estimate the number of objects
in a captured image, is one of the most crucial tasks among multimedia data and wireless network. However, there
are enormous inherent factors that seriously degrade the counting performance in remote sensing, e.g. the background
clutter, scale variation, and orientation arbitrariness. In this paper, we tackle the aforementioned problems in a divide-and-
conquer manner by devising the dense attention fusion network (DAFNet). Specifically, we introduce an iterative attention
fusion (IAF) module, which mainly relies on the multiscale channel attention (MCA) unit, to alleviate the side effect caused
by background clutter. Meanwhile, to overcome the intrinsic scale variations, we build a dense spatial pyramid (DSP) module
to consider the hierarchical information obtained under diverse receptive fields. Finally, we stack deformable convolution
layers to deal with the orientation arbitrariness. The synergy of the proposed IAF and DSP modules substantially promotes
the effectiveness of the proposed DAFNet, which can be demonstrated by the notable superiority in extensive experiments
on the remote sensing counting datasets against state-of-the-art competitors.
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1 Introduction

Internet of Things (IoT) network connects us and the
world from every aspect. It significantly relies on large-
scale data acquired from reliable sources, one of which is
the remote sensing systems [1], owning to its numerous
advantages, e.g. rich ground information and clear content,
which can substantially facilitate the subsequent processing
in the embedded devices. In recent years, widespread
attention has been focused on object detection [2, 3], image
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segmentation [4, 5] in remote sensing images. However,
object counting is still in its infancy. Counting the major
objects on the ground (e.g. buildings, vehicles, and ships)
in remote sensing images is instrumental for numerous
research fields, e.g. urban planning [6], environment
management [7] and digital city model construction [8].

The purpose of object counting is to estimate the
object number in a given image. The research has
yielded satisfactory results in many domains, i.e., crowd
counting [9, 10], animal counting [11], cell counting [12],
and vehicle counting [13]. The pioneering object counting
methods are mainly detection-based [14, 15] methods,
which utilize a detector to identify and locate the position
of an object. The limitation of these approaches is
that they only handle the sparse scene and performs
barely satisfactory in dense condition. To overcome these
disadvantages, regression-based methods [16, 17] have been
proposed. The key idea of these methods is learning a
mapping from an image to the count number. Nevertheless,
these methods tend to ignore the location information, thus
are suboptimal for generating a density map.

Nowadays, the powerful ability of convolutional neural
network (CNN) drives an increasing number of researchers
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to leverage it to improve counting accuracy. These CNN-
based methods aim to regress a density map and sum up
the all pixels to estimate the final counts. However, there
still exists some challenges in this domain, e.g., background
clutter, scale variation and orientation arbitrariness. The
remote sensing images are often captured from the sky, thus
the objects present a tiny size. The complex background
makes the model unable to emphasize the region of interest,
which causes the objects to drown in background clutter.
Furthermore, objects in remote sensing images show diverse
sizes, ranging from several pixels to hundreds of pixels. The
large-scale variation is unfavourable to predict an accurate
number of objects. Besides, the objects in the remote
sensing images possess uncertain orientation, which makes
the remote sensing counting task more difficult than other
counting tasks.

The challenges in remote sensing images are depicted in
Fig. 1 (Note: notable regions are shown in red bounding
boxes). Figure 1(a) exhibits the different scales of ships.
Figure 1(b) shows that the vehicles are obscured by trees
and suffered from background clutter. Figure 1(c) depicts
the arbitrary orientations of vehicles and buildings.

To cope with these challenges and enhance the counting
performance in remote sensing, we propose the dense
attention fusion network (DAFNet). The VGG-16 is
first utilized as the feature extractor to extract image
features. Meanwhile, we propose an iterative attention
fusion (IAF) module, which mainly based on multiscale
channel attention (MCA) unit, to suppress the influence
of the background clutter. In addition, we introduce a
dense spatial pyramid (DSP) module to address the problem
of scale variation. Finally, the deformable convolution
layers are adopted to resolve the problem of orientation
arbitrariness. In a nutshell, the main contributions are three
aspects.

1. We develop the DAFNet, which is capable of boosting
the counting performance of remote sensing objects in
a divide-and-conquer manner.

2. We design an IAF module to suppress the influence
of the background clutter, and build a DSP module to
address the problem of scale variation.

3. We execute extensive experiments to verify the
performance of object counting in challenging remote
sensing scenarios. Meanwhile, detailed ablation studies
are conducted to prove the effectiveness of the
individual components in the proposed model.

2 Related work

2.1 Traditional object countingmethods

The traditional object counting methods fall into two broad
categories, i.e., detection-based [14, 15] and regression-
based methods [16, 17]. The detection-based methods
utilize a head detector to realize the counting task. Li et
al. [18] utilized a histogram of oriented gradient (HOG)
based head-shoulder detector to detect the number of
individuals present in the given image. Ge et al. [19]
deployed a marked point process based on Bayesian
formulation to locate persons in congested scenes. The
detection-based methods present satisfactory results in
sparse crowds, but they have poor performance in dense
scenes.

To deal with the problems in congested scenes, many
regression-based methods have been proposed to enhance
the counting accuracy, which mainly learn a mapping from
the given image to the count. Lempitsky et al. [16] built a
linear mapping between subtle features and the density map,
which is obtained by understanding the spatial distribution.

Fig. 1 Illustrations of the
challenges in remote sensing
images

(a) (b) (c)
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Pham et al. [17] introduced a non-linear mapping, which
utilizes a crowdedness prior to optimize two random forests.
Although these methods have achieved gratifying results,
their performance is greatly degraded by challenge factors
including scale variation and background clutter.

2.2 CNN-based object countingmethods

Benefitting by the advantages of deep learning, the CNN-
based methods [20] have been widely used to improve
counting accuracy in recent years. Zhang et al. [21]
built a three-branch network named MCNN for crowd
counting. Each branch in MCNN adopts different kernel
sizes to obtain diverse receptive fields to cope with
scale variations. Similar to MCNN, Li et al. [22] also
proposed a multi-column network called congested scene
recognition network (CSRNet), in which four parallel
dilated convolutional layers are added to the back-end
of the network to enlarge the receptive field. Albeit
alleviating the influence of scale variation, the multi-column
network is difficult to train since it requires more time and
more bloated structure. Besides, it can lead to information
redundancy as the multi-column network using different
branches but almost the same network structures [20, 22].

To avoid the above problems, many advanced approaches
have exploited multiscale feature fusion to alleviate the
side effect caused by scale variation. Liu et al. [23] built a
content-aware network (CANet), which employs different
receptive fields to fuse features. Gao et al. [24] put forward
a perspective crowd counting net (PCCNet) aiming to

tackle the perspective variations. The network can merge
hierarchical features with the assistance of density map
estimation module and foreground segmentation module.

In recent years, attention mechanism has been adopted to
counting task, and achieved extraordinary performance [25–
27]. Attention mechanism aims to deliberately emphasize
the region of interest and minimize the impact of
background noise. Liu et al. [28] introduced an attention
map to compute the different crowd density levels and
suppress the background noise. Sindagi et al. [29] employed
a spatial attention module to choose the discriminative areas
in feature maps, and a global attention module to suppress
the unnecessary information along the channel dimension.
Jiang et al.[30] introduced an attention scaling network to
produce the scaling factors, which are capable to reflect
the density levels. The scaling factors are multiplied by the
mask density map generated by the front-end network to
obtain a refined prediction. Rong et al. [31] built a crowd
region recognizer (CRR), which can generate a coarse-
grained attention map, to alleviate the background noise.

3 The proposedmethod

3.1 Overview

Figure 2 exhibits the framework of the DAFNet. It includes
four modules: (1) A feature extractor module to obtain
the basic features; (2) An IAF module to address the
background clutter; (3) A DSP module to deal with the scale

Fig. 2 Framework of the
DAFNet
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variation; (4) A deformable convolution module to solve the
orientation arbitrariness.

The first ten convolution layers of VGG-16 are utilized to
extract the low-level features. The features are fed into the
IAF module to suppress the effect of background and then
produce the refined feature map. Meanwhile, the DSP mod-
ule is introduced to perceive the scale through the various
dilated convolution layers. Finally, the deformable convo-
lution layers are employed to overcome the orientation
arbitrariness. The DAFNet can be represented as follows,

M = Dconv(fdsp(fiaf(X))), (1)

where M and X denote the prediction and the low-level
features, respectively. The fdsp and fiaf are the functions
of the DSP and IAF modules. Dconv represents the
deformable convolution layers.

3.2 Iterative attention fusionmodule

The IAF module is built to suppress the background clutter.
It is achieved by two multiscale channel attention (MCA)
units. The framework of the MCA unit is illustrated in
Fig. 3. The top-branch adopts two 1×1 convolution layers to
enrich the input feature X ∈ R

C×H×W and outputs a local
attention feature map Ml ∈ R

C×H×W . The operation of the
top branch is formulated as,

Ml = BN(Conv2(ReLU(BN(Conv1(X)))), (2)

where BN is short for batch normalization and ReLU
denotes the activation function. Compared with the top
branch, the mid-branch aims to achieve the global context
aggregation and obtain a global attention feature map Mg ∈
R

C×1×1, which is helpful to highlight the global context
information. The Mg is computed as,

Mg = GAP(BN(Conv2(ReLU(BN(Conv1(X))))), (3)

where GAP represents a global average pooling operation.
It is remarkable that the local attentional map Ml has the

different dimensions with the global attentional map Mg .
This is due to that the GAP operation compresses the input
feature map to 1 × 1 in spatial dimension. Subsequently,

the local and global feature maps are aggregated by the sum
operation to assemble the inner discriminative information.
Then, the fused feature is activated by the Sigmoid function
in spatial dimension while the channel dimension remains
unchanged.

The purpose of the bottom branch is to aggregate the
original features to produce a high-quality density map that
contains rich local and global context information. In a
nutshell, the refined feature map M ′ by the MCA unit is
defined as

M ′ = X ⊗ Sigmoid(L(M) ⊕ G(M)), (4)

where M and M ′ denote the input and refined feature
maps, respectively. L(·) and G(·) represent the local and
global attention functions. ⊗ denotes the element-wise
multiplication, and ⊕ is the sum operation. By enhancing
the features through MCA unit, the object area can be better
distinguished.

Owing to the merits of the MCA unit, we further
assemble it to build the IAF module. As depicted in Fig. 2,
the IAF module aims to fuse two input feature maps, i.e.,
X and Y , which are obtained by convolution layers with
diverse kernel sizes. Such strategy is different from the
traditional fusion ways[21, 27], most of which only take one
feature as the input for fusion process and adopt multiply
branches to acquire different level features. First, X and Y

are integrated into a feature map through the element-wise
summation. The fused feature map is fed into the MCA unit
to output two feature maps: One is obtained by multiplying
the initial feature X with the weight σ , and the other is
acquired by multiplying the initial feature Y with the weight
(1 − σ ) (denoted in red line in Fig. 2).

To fully exploit the context information, selecting a high-
quality input is helpful to generate useful fusion weights.
Hence, an intuitive way is to adopt another attention unit to
fuse input features. It is an iterative process, so we name
the module as iterative attention fusion (IAF) module. It is
formulated as,

Z = M(X ⊕ Y ) ⊗ X + (1 − M(X ⊕ Y )) ⊗ Y, (5)

Fig. 3 Framework of the MCA
unit
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whereZ represents the fused feature map.X⊕Y denotes the
attentional feature fusion process of the first stage, which
can be represented as,

X ⊕ Y = M(X + Y ) ⊗ X + (1 − M(X + Y )) ⊗ Y, (6)

where ⊕ and ⊗ denote the element-wise summation and
multiplication, respectively. M(·) refers to the function of
the MCA unit.

3.3 Dense spatial pyramidmodule

In remote sensing images, the object often suffered from
scale variation in dense regions. To cope with the problem,
we introduce the dense spatial pyramid (DSP) module. The
framework of DSP module is shown in Fig.4.

The DSP module mainly consists of standard and dilated
convolution layers which are dense connected. The dilated
convolution layers with different dilated rates aim to
enlarge the receptive fields while saving the parameters.
A convolution layer with kernel size 1 × 1 is added in
front of each dilated convolution layer to reduce the number
of channels. The 3 × 3 convolution layer is employed
to integrate the previously generated features. In addition,
the dense connection increases the number of channels
by a factor of four, the convolution layer can also be
used for channel reduction. Once these structures have
been arranged, another significant issue is choosing suitable
dilated rates for the dilated convolution layers.

Considering the objects in remote sensing images often
appear tiny sizes, choosing large dilated rates may lead to
the semantic information loss. This is adverse to capture
the detailed features. In addition, since the change of object
size in the image is continuous, it requires a dense sampling
range. To this aim, the dilated rates are set as 1, 2 and
3, respectively. The parameter configuration can retain the
spatial information of objects as much as possible.

As shown in Fig. 4, the DSP module can cover all
pixel information of the input feature map. Meanwhile,
as the chosen dilated rates are small, it can prevent the
module from capturing the irrelevant information. Overall,

dr=1

dr=2

dr=3

Fig. 4 Flowchart of DSP module for capturing information, where
dr denotes the dilated rate. The black block denotes the source of
information

the process of the DSP module is formulated as,

D = Convi
3×3(Conv1×1(X))), i ∈ {1, 2, 3}, (7)

O = Conv3×3(DC(D)), (8)

where D and X represent the features after the dilated
convolution layers and the input features, respectively. O

refers to the output of the DSP module. DC denotes the
dense connection, and i is the dilated rate.

The dilated convolution layers in the DSP module are
densely connected with others. In this case, each layer
can acquire the information from the previous layers, and
transfer the information to the subsequent layers. This DSP
module can increase the scale diversity to deal with scale
variation.

3.4 Loss function

We utilize l2 distance as the loss function to measure the
discrepancy between the estimated and the ground truth
density map. It is denoted as,

Loss = 1

N

∥
∥y − ŷ

∥
∥2
2 , (9)

where N denotes the number of test images. y and ŷ denote
the estimated and the ground truth values, respectively.

3.5 Ground truth generation

The ground truth map Mgt is generated by adopting a
Gaussian kernel convolving a delta function [21]:

Mgt =
H

∑

i=1

δ(x − xi) ∗ Gσi
(x), σi = βd̄i, (10)

where H denotes the number of head annotations and x

refers to the position pixel. σi represents the variance of the
Gaussian kernel. The δ(x − xi) depicts a target head.

4 Experiments and analysis

4.1 Implementation details

The experiments are performed in the PyTorch frame-
work [32]. We employ data augmentation to prevent over-
fitting. Specifically, for the building subdataset, the images
are cropped to 256 × 256. For the other three subdatasets,
e.g. small-vehicle, large-vehicle and ship subdatasets, the
images are resized to 128 × 128. Meanwhile, we adopt a
horizontal flip to double the data volumes.

During the training phase, we adopt the stochastic
gradient descent (SGD) optimizer to train the proposed
network in the end-to-end manner. We set the learning rate
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as 1e-7, and the decay rate is set as 5e-4. The momentum
of the SGD optimizer is set as 0.95. The maximum number
of training epochs is set as 450. For building subdataset,
the batch size is set to 16. Considering that the other three
subdatasets have large resolutions, which may result in
out-of-memory of GPU, the batch size is set to 4.

4.2 Evaluationmetrics

The Mean Absolute Error (MAE) and Root Mean Squared
Error (RMSE) are adopted for objective evaluation, which
are formulated as,

MAE = 1

N

N
∑

i=1

|GT i − Esti |, (11)

RMSE =
√
√
√
√

1

N

N
∑

i=1

|GT i − Esti |2, (12)

where N denotes the number of testing samples. GT i and
Esti represent the ground-truth and estimated count of the
i-th sample, respectively. The two metrics can reflect the
accuracy and robustness, respectively. Specifically, lower
MAE and RMSE represent better counting accuracy and
robustness of the model.

4.3 Comparative analysis

Experiments are conducted on RSOC dataset [32], which
contains the most remote sensing images till now. Accord-
ing to different kinds of objects, the RSOC dataset is divided
into four subdatasets, i.e., building, small-vehicle, large-
vehicle, and ship. All the images are captured by satellites,
and some samples are illustrated in Fig. 5. Comparative
experiments are carried out among various state-of-the-art
methods. The experimental results are reported in Table 1.

The building subdataset contains 2468 images crawling
from Google Earth. The training and test sets have 1205 and
1263 images, respectively. The average resolution is 512 ×
512. There are totally 76,215 annotated buildings in this
dataset. For the building subdataset, the proposed DAFNet
scores 7.39 and 10.87 in MAE and RMSE, respectively,

both outperforming the competitors. Specifically, the
second-best method SPN [10] built a scale pyramid to
deal with scale variation by connecting parallel convolution
layers, the proposed DAFNet address the problem by dense
connection. Compared with it, the DAFNet decreases the
MAE and RMSE by 4.5% and 5.3%, respectively.

The small-vehicle subdataset contains 280 images with
148,838 annotations in total (222 images for training and 58
images used for test). The average resolution of the images
is 2473× 2339. The subdataset is collected from the DOTA
dataset. On this subdataset, the DAFNet gets a score of
404.46 and 1211.78 in MAE and the RMSE, both ranking
the first place. Compared with the second-best method, i.e.,
SFANet [36], it decreases by 7.1% and 6.2% in terms of
MAE and RMSE. Although the proposed method obtains
the best results, the scores of MAE and RMSE are still very
high, indicating that there is much room for improvement.

The large-vehicle subdataset is composed of 172 images
with 16,594 annotated instances (108 images for training
and 64 images used for test.). The average size of each
image is 1552 × 1573. On the large-vehicle subdataset, the
DAFNet achieve the best scores of 27.32 in MAE and 40.85
in RMSE. Compared with the SCAR [9], which also adopts
the attention mechanism, the proposed DAFNet improves
the MAE and RMSE by 56.5% and 48.7%.

The ship subdataset includes 137 images, of which
97 images are used for training and 40 images for test.
Compared with other subdatasets, the images in this
subdataset have the highest resolution 2558× 2668. On this
subdataset, the proposed DAFNet scores 200.43 and 294.11
in MAE and RMSE, both ranking the first place among
the methods. Compared with the SPN [10], which is also
built to overcome the scale variation in dense regions, the
proposed DAFNet improves the MAE and RMSE by 16.9%
and 25.1%, respectively.

Figure 6 provides some visualized samples. It can be
seen that both the estimated density map and the estimated
counting results closely approach to the ground truth.

4.4 Ablation study

To validate the effectiveness of proposed IAF and DSP
modules in the DAFNet, we carry out ablation studies on the

Fig. 5 Samples in RSOC
dataset. (a)∼(d) denote the
images in building,
small-vehicle, large-vehicle and
ship subdatasets, respecitively

(a) (b) (c) (d)
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Table 1 Comparative results on the building, small-vehicle, large-vehicle, and ship datasets. The best performances are highlighted in bold

Method Building Small-vehicle Large-vehicle Ship

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

MCNN[21] 13.65 16.56 488.65 1317.44 36.56 55.55 263.91 412.30

CMTL[33] 12.78 15.99 490.53 1321.11 61.02 78.25 251.17 403.07

SANet[34] 29.01 32.96 497.22 1276.66 62.78 79.65 302.37 436.91

SCAR [9] 26.90 31.35 497.22 1276.65 62.78 79.64 302.37 436.92

CSRNet[22] 8.00 11.78 443.72 1252.22 34.10 46.42 240.01 394.81

SPN [10] 7.74 11.48 455.16 1252.92 36.21 50.65 241.43 392.88

CAN [23] 9.12 13.38 457.36 1260.39 34.56 49.63 282.69 423.44

SFCN [35] 8.94 12.87 440.70 1248.27 33.93 49.74 240.16 394.81

SFANet [36] 8.18 11.75 435.29 1284.15 29.04 47.01 201.61 332.87

DAFNet (Ours) 7.39 10.87 404.46 1211.78 27.32 40.85 200.43 294.11

small-vehicle subdataset. As shown in Table 1, the small-
vehicle subdataset is the most challenging, as the MAE
and RMSE scores in the small-vehicle subdataset are the
highest. Therefore, the ablation experiments on this dataset
is more objective. The detailed configurations are depicted
as follows:

Baseline: The first ten layers of VGG-16 and the
deformable convolution layers are employed.

Baseline+IAF: Adding the IAF module between the
VGG-16 and the deformable layers.

Baseline+DSP: Adding the DSP module between the
VGG-16 and the deformable layers.

Baseline+DSP+IAF: Adding the DSP and IAF modules
sequentially between the VGG-16 and the deformable
layers.

Baseline+IAF+DSP: Adding the IAF and DPS modules
sequentially between the VGG-16 and the deformable
layers.

The ablation experimental results are tabulated in
Table 2. It can be observed that the baseline scores 498.85
and 1322.17 in MAE and RMSE, respectively. Employing
the IAF module on the baseline basic, one can see that
the MAE and RMSE decrease by 14.9% and 3.6%. This
demonstrates the effectiveness of the IAF module. Besides,

Fig. 6 Visualized results of the
DAFNet on RSOC dataset. The
top row denotes the input image,
the middle row is the ground
truth, and the bottom row shows
the estimated density map.
(a)∼(d) :The visualization of
building, small-vehicle,
large-vehicle and ship
subdatasets, respectively. “Gt”
and “Est” denote the ground
truth and estimated count
values, respectively

Gt:46.0

Est:46.5

Gt:454.0

Est:461.7

Gt:536.0

Est:521.8

Gt:37.0

Est:37.8

(a) (b) (c) (d)
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Table 2 Comparative results on the small-vehicle subdataset. The best
performances are highlighted in bold

Methods MAE RMSE

baseline 498.85 1322.17

baseline+DSP 431.12 1278.35

baseline+IAF 424.42 1274.19

baseline+DSP+IAF 417.78 1240.54

baseline+IAF+DSP 404.46 1211.78

adding the DSP module to the baseline, the performance
improves 13.6% and 3.3% inMAE and RMSE, respectively.
Then, we add these two modules to the baseline in different
orders. Adopting the DSP module first and the IAF module
second on the basis of baseline, it scores 417.78 and,
1240.54 inMAE and RMSE, respectively. By comparison, it
achieves the best counting performance, by adding the IAF
module first and the DSP module second. Compared with
the baseline, the MAE and RMSE decrease by 18.9% and
8.3%, respectively. As mentioned in Section 3.1, the IAF
module is designed to suppress the background clutter and
select a region where objects exist, while the DSP module
is built to solve scale variation. In the configuration with the
IAF module first and DSP second, the DSP module can be
adopted to achieve more precise optimization in the region
selected by the IAF module. However, when the order is

reverse (i.e., DSP module first and IAF second), the result
is suboptimal.

4.5 Failure cases

Despite the proposed DAFNet exhibits the superior
experimental results against other mainstream methods, the
counting performance is unsatisfactory on small-vehicle
and ship subdatasets, as depicted in Table 1. In these two
subdatasets, the small size of vehicles and ships makes
it difficult to provide rich semantic information, which
increases the difficulty of training models. In future work,
we will study feature extraction algorithms for small objects
to improve counting performance (Fig. 7).

5 Conclusion and future work

We propose a DAFNet for accurate object counting in
remote sensing images. The IAF module is built to
address the background clutter by emphasizing the region
containing the objects. The key component of the IAF
module is the MCA unit, which is built to merge the
local and global features. To address the problem of
scale variation in dense region, a DSP module is built,
which adopts diverse dilated convolution layers with small
dilated rates (1, 2 and 3) and improves the counting
performance by capturing a large receptive field. Finally, we

Fig. 7 Failure cases in RSOC
dataset. The original, ground
truth, and estimated images are
represented from top to bottom.
“Gt” and “Est” denote the
ground truth and estimated
count values, respectively

Est:422.6

Gt:656.0 Gt:595.0

Est:367.9

Gt:236.0

Est:147.3

Gt:45.0

Est:173.6
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introduce the deformable convolution layers to handle the
orientation arbitrariness. Experimental results prove that the
DAFNet outperforms the state-of-the-art methods in remote
sensing scenarios with background clusters and large-scale
variations.

It is worth mentioning that the scores of MAE and
RMSE on the small-vehicle and ship subdatasets are still
unsatisfactory. In future work, we intend to design a
better module to enhance performance against small objects
counts.
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