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ARTICLE INFO ABSTRACT
Keywords: Federated Learning (FL) has emerged as a promising approach for decentralized machine learning in Internet of
Federated learning Things (IoT) applications, where privacy-sensitive data remains distributed across devices. However, FL systems

Security and privacy
Malicious attacks
Internet-of-Things
Model robustness

are vulnerable to attacks that are happening in malicious clients via data poisoning and model poisoning.
Once such malicious models are fused in the global server, it will deteriorate the global model’s performance.
Existing defense methods typically mitigate specific types of poisoning but are often ineffective against others.
To overcome this issue, we propose a simple yet effective framework called Confidence-Aware Defense (CAD).
It aims to achieve accurate, robust, and versatile detection of malicious attacks. CAD evaluates the reliability
of client updates by leveraging the confidence scores produced by each FL client model. Our key insight
is that poisoning attacks, regardless of attack type, will cause the model to deviate from its previous state,
thus leading to increased uncertainty when making predictions. Therefore, CAD is comprehensively effective
for various types of poisoning attacks, including model poisoning and data poisoning. The proposed CAD
method accurately identifies and mitigates malicious updates, even under varying attack intensities and data
heterogeneity. CAD is evaluated on standard FL benchmarks (CIFAR-10, MNIST, Fashion-MNIST) under non-1ID
settings and both model and data poisoning attacks. It achieves up to 97.8% accuracy on MNIST and sustains
over 64% accuracy under 50% poisoning on CIFAR-10. CAD surpasses all prior defense methods in robustness
and performance. These results demonstrate the practicality of CAD in securing FL systems against various
threat scenarios.

1. Introduction requirements (e.g., GDPR). FL addresses these challenges by enabling
local data processing on IoT devices while only sharing model up-

Federated Learning (FL) [1] is a distributed machine learning dates, making it a suitable solution for large-scale, privacy-preserving
paradigm that enables multiple clients, such as edge devices, to col- IoT applications [2,3]. Federated learning can be categorized based

laboratively train a model without exchanging their local private data.
This paradigm aligns seamlessly with the Internet of Things (IoT)
ecosystem, where a vast number of interconnected devices generate
massive volumes of decentralized, privacy-sensitive data. A typical FL
system for IoT applications is shown in Fig. 1. IoT devices, ranging from
wearable sensors to smart home appliances, often collect user-specific
information that cannot be transmitted to centralized servers due to
privacy concerns, bandwidth limitations, or regulatory compliance

on data partitioning characteristics into horizontal federated learning
(HFL), vertical federated learning (VFL), and federated transfer learning
(FTL) [4,5]. HFL deals with scenarios where clients share the same
feature space but differ in sample space, such as image classification
tasks across multiple institutions. VFL assumes that clients hold data
with overlapping samples but different feature spaces, often seen in
collaborative financial or e-commerce applications. FTL handles cases
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Fig. 1.

Illustration of a federated learning framework for IoT with edge devices. The system involves multiple local clients, such as IoT devices and edge devices, who are

collaboratively training a global model. Local data is processed, and models are trained locally on devices, with local model updates uploaded to a central global server. The server
aggregates the updates into a unified global model, which is then distributed to local clients for further training.

where both sample and feature spaces vary significantly across clients,
using transfer learning techniques to enable collaboration.

However, the decentralized nature of FL introduces significant se-
curity challenges, particularly in the context of IoT systems. Malicious
attacks originating from distributed local clients can severely com-
promise the globally trained model’s performance through poisoning
strategies such as data poisoning and model poisoning [6-8]. In data
poisoning attacks, adversaries manipulate clients’ local training data by
injecting biases or false patterns to mislead the global model during
training; e.g., label shuffling, where data-label pairs are randomly reas-
signed, can cause substantial confusion in the updated global model [9,
10]. On the other hand, model poisoning attacks involve directly
tampering with the model updates sent to the central server, with
Byzantine attacks being a representative example where malicious
clients submit arbitrary or random updates to disrupt the learning
process and degrade model performance [11,12]. Both attack types not
only degrade predictions and hinder the convergence of deep neural
networks but can also cause a complete model collapse in extreme
cases. The consequences are particularly severe in IoT applications,
where FL is often employed in safety-critical systems such as healthcare
monitoring, autonomous vehicles, and industrial control. An unde-
tected malicious attack in these scenarios could impair the system’s
functionality and pose risks to human safety. Therefore, developing
robust and efficient methods to detect and defend against such attacks
is of great importance for ensuring the reliability of FL systems in IoT
environments.

Existing defense mechanisms primarily target specific types of poi-
soning attacks, under a moderate attack. Byzantine-robust methods
such as Krum [13] and Trimmed Mean [14] aim to mitigate the impact
of outliers among client updates but often fall short when dealing with
data poisoning attacks. However, these methods generally assume that
the majority of clients are honest, which may not hold true in practical
scenarios where the proportion of malicious clients is significant [11].
Recent advanced methods are primarily driven by the analysis of
fine-grained model consistency. In that context, FLDetector [15] im-
proves upon existing defenses by detecting malicious clients through
the consistency of their model updates across historical iterations, and
flags clients whose updates deviate significantly. DeFL [16] focuses on
critical learning periods within the training process to determine the
gradient changes and remove malicious clients. FedRoLA [17] enhances
robustness by analyzing the per-layer consistency of model updates
and conducts aggregation based on the alignment of updates at each
layer. However, these methods are simply designed to address specific
types of attacks under a certain degree of attack Intensities, and exhibit

limited robustness and versatility against a wide range of attack types
and intensities

Given the inherent uncertainty of FL systems and the attacks’ com-
plexity, being capable of addressing only certain types of attack is
far from sufficient. A robust and comprehensive defense approach is
needed to ensure the integrity and reliability of the global model across
all scenarios, including various types of attacks with differing levels
of severity and degrees of data heterogeneity. To meet this demand,
we propose a simple yet effective defense model, termed Confidence-
Aware Defense (CAD), based on the confidence scores of clients’ local
models, which measures how certain a model is about its predictions,
with higher scores indicating greater certainty and lower scores reflect
higher uncertainty. Our key insight is that malicious attacks, regardless
of attack type, will cause the model to deviate from its previous state,
thus leading to lower confidence in its predictions. Inspired by this
observation, we propose to use the confidence scores as a criterion to
evaluate the reliability of client updates. Based on this, we develop CAD
as an effective defense mechanism for both model poisoning and data
poisoning attacks. CAD’s design helps to identify and mitigate malicious
updates regardless of the attack type and attack intensity. Specifically,
the proposed approach includes the following steps: 1. Collecting con-
fidence scores of each client update: During each training round, we
collect the confidence scores of model updates from each client. 2.
Establishing confidence boundaries: Based on the collected confidence
scores, we assess the confidence of each client model update and set the
boundaries as a reference. 3. Detecting and handling malicious updates:
Based on the boundaries, we identify updates with lower confidence
scores and take appropriate actions, such as discarding or dampening
these updates.

Our key contributions are summarized as follows:

» We identify the intrinsic correlation between model confidence
and poisoning attacks, which serves as the foundation for a
straightforward yet effective confidence-based method to detect
malicious clients and determine whether an attack has occurred
on a local client. Our approach is versatile and applicable to both
model poisoning and data poisoning attacks, under various data
heterogeneities.

By detecting malicious attacks on client model updates through
confidence scores, the proposed method demonstrates effective-
ness against certain poisoning attacks of varying intensities.
Whether facing moderate (25% malicious clients), severe (50%
malicious clients), or extreme (75% malicious clients) activities,
our approach ensures higher model accuracy and stability.
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» We validate the proposed method through extensive experiments
on multiple datasets and demonstrate its effectiveness in enhanc-
ing the security and performance of FL models against a wide
range of attacks. The results show that our confidence-based
defense mechanism outperforms existing methods in terms of
robustness and accuracy in detecting and mitigating malicious
updates.

The rest of the paper is organized as follows: Section 2 reviews
related work, including FL in IoT, malicious client attacks, and defense
mechanisms. Section 3 introduces the proposed Confidence-Aware De-
fense (CAD) and its core components. Section 4 presents experimen-
tal results demonstrating CAD’s robustness and effectiveness. Finally,
Section 5 concludes the paper with a summary and future directions.

2. Background and related work
2.1. Federated learning (FL) in IoT

The objective of Federated Learning (FL) [18] is to facilitate col-
laborative training of a shared global model across multiple learning
entities while keeping locally generated data private and secure [19—
21]. It is particularly well-suited for IoT applications, which devices
often collect vast amounts of sensitive data, such as health metrics, user
behavior, or environmental information. These data cannot be shared
directly due to privacy concerns or communication constraints [22,23].
FL addresses these challenges by dividing the learning process into two
key stages: local training and global aggregation. Each IoT device trains
a local model using its private dataset during the local training phase.
This phase involves updating the model parameters based solely on the
local data [24]. After completing the local training, each device sends
the updated model parameters to a central server or edge aggregator for
global aggregation. The global aggregation stage combines the received
model updates from participating devices to form a new global model.
The most widely used aggregation approach is Federated Averaging
(FedAvg) [24], which computes a weighted average of model param-
eters from participating devices. Despite its advantages in preserving
data privacy and enabling decentralized learning, FL in IoT systems
faces significant security challenges [18]. The decentralized nature of
FL makes it vulnerable to attacks, including data poisoning, where
adversaries manipulate local datasets [6], and model poisoning, where
malicious devices send crafted model updates to compromise the global
model [21]. These challenges are exacerbated in IoT scenarios, where
devices are resource-constrained and operate in highly heterogeneous
environments [25]. Given the critical role of FL in privacy-sensitive IoT
scenarios, developing efficient and robust defense mechanisms to detect
and mitigate the impact of malicious activities is imperative [26,27].

2.2. Malicious poisoning attacks

FL models are susceptible to malicious attacks, which can signif-
icantly degrade the performance of the global model, as illustrate in
Fig. 2. The malicious attacks can be broadly categorized into data
poisoning and model poisoning.

Data Poisoning Attacks: In data poisoning attacks, malicious clients
intentionally manipulate their local training data to degrade the perfor-
mance of the global model. Common strategies include label flipping,
where the labels of training samples are deliberately swapped, and label
shuffling, where the labels of training samples are randomly reassigned.
These attacks aim to bias the model’s training process, and further lead
to inaccurate or harmful predictions. Rahman et al. [28] highlights
how local model poisoning through data manipulation can significantly
impact the robustness of federated learning systems. Shen et al. [29]
propose a data poisoning attack that specifically address the label
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Fig. 2. Impact of malicious attacks on model convergence under the “Little Is Enough”
attack at various intensities. FedAvg aggregation degrades significantly, while our CAD
consistently maintains high accuracy and robustness.

flipping poisoning attack. Similarly, Smith et al. [30] examine clean-
label poisoning attacks, where the manipulated data appears legitimate
but is designed to subvert the performance of the model.

Model Poisoning Attacks: In contrast to data poisoning, model poi-
soning refers to malicious clients directly sending manipulated model
updates to the central server during the global aggregation phase. These
attacks are conducted by altering the model parameters in a way that
maximizes the negative impact on the global model. Zhang et al. [31]
have demonstrated how backdoor attacks could be performed by in-
jecting specific patterns into the model updates, enabling attackers to
trigger incorrect behaviors under certain conditions. Liu et al. [32]
propose FLOW framework to detect and mitigate model poisoning
attacks in FL systems. Lee et al. [33] analyze the adversarial impact
of model attacks on federated learning models. Additionally, Byzantine
attacks, which involve arbitrary or adversarial behavior by clients,
can be classified under model poisoning when clients send random
or adversarial updates to the central server. Recent Byzantine-robust
methods like Krum++ [34] and Enhanced Trimmed Mean [35] aim to
filter out these abnormal updates but can struggle when the attacks are
sophisticated.

2.3. Adversarial robustness in FL

Adversarial robustness has become a critical area of research in
machine learning, focusing on developing models and algorithms that
can withstand adversarial manipulations and malicious attacks. In the
context of federated learning, adversarial robustness is particularly
important due to the decentralized nature of FL and the increased
risk of adversarial clients or poisoned updates. Techniques such as
adversarial training [36], robust aggregation methods [13,14], and
certified defenses [37] have been proposed to enhance the resilience of
machine learning models against a wide range of attacks. Recent works
have also explored the adaptation of these techniques to federated
settings, aiming to defend against both data and model poisoning
attacks [12,27,38]. Our proposed method is inspired by these advances
and seeks to further improve the robustness of FL systems by leveraging
confidence-aware detection and aggregation strategies.

2.4. Common defenses against malicious attacks

Recently, numerous works have been proposed to detect and mit-
igate the aforementioned attacks [6,15-17]. DeFL [16] is proposed
as a defense mechanism that secures critical learning periods during
the training process to reduce the impact of model poisoning attacks.
Zhang et al. [15] introduced FLDetector to integrate statistical analysis,
anomaly detection, and machine learning methods to enhance the
accuracy of detecting poisoned updates. FedRoLA [17] strengthens
robustness by analyzing per-layer consistency in model updates and
conducting aggregation based on the alignment of updates at each
layer. Despite the improved accuracy in detecting malicious clients,
these existing methods are often tailored to specific types of attacks.
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Table 1
Comparison of state-of-the-art FL defenses and our proposed CAD.
Method Detection Assume Aggregation Robust under
criteria majority honest high attack rate
FLDetector [15] Historical gradient consistency Yes Standard/FedAvg No
DeFL [16] Gradient dynamics during Yes Standard/FedAvg Limited
critical learning periods
FedRoLA [17] Per-layer alignment of model Yes Layer-wise Aggregation Limited
updates
CAD (Ours) Confidence score clustering No Confidence-weighted Yes
Additionally, they typically rely on the fragile assumption that the Table 2
attack intensity is moderate, meaning less than 25% of the participating Mathematical notations.
clients are malicious, which may not hold in a practical FL system Notation Description
where higher proportions of malicious clients can be present. To re- ! Number of training round
1 h limitati in thi he CAD del n Number of clients
solve these limitations, in this paper, we propose the model to D, Local dataset of client i
address both types of attacks and varying intensities. The comparison of 0 Global model parameters
state-of-the-art FL defenses and our proposed CAD is shown in Table 1. 0; Local model parameters of client i
cl Individual loss for sample j in D,
o, Confidence score for client i
2.5. Model conﬁ'dence N Set of confidence scores from all clients
Hiower> Hupper Centroids from k-means clustering
H Set of honest clients
Model confidence [39] refers to a model’s certainty regarding M Set of malicious clients
its predictions. Higher confidence scores indicate greater confidence, En Data lengths of honest clients
; K i R . R Worig Original weights based on data lengths
while lower scores suggest higher uncertainty. It provides insights into Re-weight regularization factors
the model’s decision-making process by identifying the predictions that Foorm. Normalized regularization factor
the model is less sure about [40,41]. Recent studies have also ex- Winal Final weight for client i
w Lambert W function

plored uncertainty estimation in broader federated and ensemble-based
decision systems. For instance, confidence and uncertainty modeling
have been applied to federated medical decision-making for COVID-19
treatment allocation [42], intelligent evaluation in IoT-based agri-
culture systems [43], and ensemble-based multi-level meta-decision
frameworks [44]. While these works focus on different application
domains, they highlight the importance of uncertainty handling in
distributed and federated environments.

Super Loss is a confidence-aware loss designed for curriculum learning,
which incorporates confidence scores to determine the reliability of
each training instance [45]. It introduces a regularization to adjust the
loss dynamically based on the confidence score (/) for sample j in the
training set D. The Super Loss is defined as:

N
1 1 i
o= & (36402 w

where £; is the task loss for sample i, and ¢/ is the confidence score,
and N is the number of samples. The confidence score ¢/ is obtained
by the following closed-form solution:

- 1 2 L; —log(r)
o/ =exp (—W(imax <—E,T>>>, 2)

where log(r) is the constant, and 7 is set to the number of classes, and
A is the regularization parameter. In this work, motivated by the obser-
vation that malicious attack will disrupt the local model’s convergence
against the original global initialization, and making the learned model
less confident in the output, we propose to use per-client confidence
accumulation to determine the quality of the learned model. Note that
we use Eq. (2) solely for estimating the confidence score, in contrast
to the original design of Super Loss, which uses it as a regularization
term. The rationale is to make the CAD model versatile and applicable
to various tasks, and to explicitly demonstrate that the effectiveness
stems from the detection algorithm rather than modifications to the
loss function. We adopt the Super Loss for uncertainty estimation as
it derives confidence directly from per-sample loss, which serves as a
model-agnostic and calibration-insensitive measure without relying on
logit-based outputs.

3. Methodology
3.1. Problem formulation

We consider an FL system with N clients, each with its local dataset
D;. The goal is to train a global model 6 by aggregating the local
updates 6; from client {C,-}fi , while mitigating the impact caused by
potential malicious clients, which can perform two types of attacks,
including Data poisoning attacks: These include label manipulation
where the local dataset is intentionally corrupted to mislead the global
model. Model poisoning attacks: Here, the model updates sent by
the clients are manipulated to degrade the performance of the global
model. To achieve this goal, we propose a Confidence-Aware Defense
(CAD) mechanism based on the client-level confidence scores ({c; }fi 1),
which reflects the uncertainty of the local model’s predictions and
helps in identifying malicious updates. The detection operation is per-
formed on the global server to select the honest local updates in each
local training round + € {1,2,...,T}, where T is the total number of
training rounds. As shown in Fig. 3, the framework consists of five
steps: (1) initializing and distributing the global model; (2) training
local models and calculating confidence score; (3) uploading models
and confidence scores, (4) detecting malicious clients via clustering,
and (5) aggregating honest updates using re-weighted aggregation. The
notations used in formulating CAD are summarized in Table 2.

3.2. Confidence-driven detection

3.2.1. Client confidence estimation

For each client, the confidence score is estimated via their local
dataset D;. Referring to Eq. (2), for each local client, we calculate
the accumulated confidence score for all samples in the local dataset
and then compute an average to obtain the per-client confidence score
a,?. For each client C;, in each local training round ¢t € {1,2,...,T},
the accumulated confidence score o is defined as the average of its
confidence scores computed on its dataset’s samples o] = NL’ ZJN=’ ) af’j s

where N; is the number of samples in D;. This o] reflects the overall
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Fig. 3. The proposed Confidence-Aware Defense (CAD) framework. It encompasses five key steps: 1. Initialize the global model and distribute it to clients. 2. Clients train their
personalized, confidence-aware local models. 3. Clients upload their local models and associated confidence scores to the server. 4. The server identifies potentially malicious clients
through confidence clustering. 5. The server aggregates the models of honest clients by re-weighted aggregation.

uncertainty of the local model’s predictions for client i in round ¢. Once
the confidence scores for all clients have been computed, they will
be normalized by min-max scaling, which transforms the confidence
scores into a uniform range [0, 1]. Let S" = { alf }:':1 represent the set
of confidence scores from n clients. The objective of normalization
is to ensure that confidence scores from different clients are directly
comparable by aligning them to a common scale. This prevents incon-
sistencies in score magnitude from affecting the clustering process and
improves detection accuracy. The normalized confidence scores S7
are formulated as:
y S? — min(S")

Storm = Tax(S7) — min(s)” ®

3.2.2. Clustering based detection

After normalizing the per-client confidence scores, the next step is
to separate the clients into two groups, namely honest and malicious
clients. To achieve this, we employ a clustering strategy that groups
clients based on their confidence scores. Specifically we apply two-way
k-means clustering upon the normalized confidence scores S} ., so
as to obtain two centroids that establish the lower bound and upper
bound:

{u lrower’ M{lpper} = k- means(snorm’ 2). (4

Once the centroids are obtained, the following step is to classify the
clients as honest or malicious based on the distance in terms of the
normalized confidence score to the cluster centroids. Specifically, a
client C; is deemed honest if its normalized confidence score ¢} is
closer to the centroid /‘Lpper (representing higher confidence) than to
the centroid 4 (representing lower confidence). Conversely, a client
is classified as malicious if the opposite holds true:

t_ il st
H ={i|lo; -

M =i lo! -

t
| <lo; —

t t
”upper 'Mlower | }’

. )
Hlowerl <lo; - Hupperl}‘

By classifying clients, we can focus on aggregating updates from only
honest clients and get rid of malicious ones, thereby enhancing the

quality and robustness of FL’s trained models.
3.3. Re-weighted aggregation

Based on the identified set of malicious clients, the next step is
to perform weight aggregation. Let ©), denote the set of honest local
model updates, and £}, represent the corresponding set of number of

samples for these honest clients. These are defined as:
e, =16 lien'), L), ={lien), (6)

by which we isolate the local updates of clients that are considered
trustworthy, so as to ensure that only reliable information will be
used in the aggregation process. Subsequently, we define the original

weights w!, orig. with respect to the number of available samples for these
honest clients. This weight is calculated as the ratio of the number of
client’s samples over the amount of total training of all honest clients:

l.
(W . Ve = {=——licwt- @
orig,i ie Zje;—[l"ﬂ' i€

In addition, to adaptively optimize the weight based on the trustwor-
thiness (confidence) of each honest client, we apply a re-weighting
strategy, for which a re-weighting regularization factor r/ is then cal-
culated for each honest client based on their normalized confidence
scores. The set of re-weighting regularization factors for honest clients

is denoted as R' = {o] | i € H'}, which are then normalized rnorml =
1

%, so that one can ensure that the aggregation process give appro-
_[EH

priate importance to individual client models. Once the original weights
and the re-weighting regularization factors are obtained, we combine
both to obtain the final weights as wfmal i = Torm.i Worig i As a final step,
the global model parameters are then aggregated by the re-weighted
average, which ensures the contributions from different clients are
proportional to their combined confidence scores and original weights.
Let ), be the set of models from the honest clients, then the updated
global model 9 | is obtained as:

14
o' Zient Wengr; 0i - i

8
global — ZiGH‘ w;inal,i - ®
We summarize the process of CAD in Algorithm 1. By interac-
tively conducting this detection and selected aggregation, our proposed
CAD model effectively identifies and aggregates updates from honest
clients, while ensuring that the aggregation process gives more weight
to clients with higher confidence scores, thus improving the overall
performance and security of the FL model.

3.4. Algorithm complexity analysis

3.4.1. Computational complexity
The computational complexity of the proposed method consists
of three main steps: confidence estimation, clustering-based detec-
tion, and re-weighted aggregation. For confidence estimation, the total
complexity for all clients is:
n
O(Niotal * F),  Niotal = Z N;. €))
i=1
Clustering-based detection uses two-way k-means, with a complexity
of O(n - 1), where n is the number of clients and ¢ is the number of
iterations. Re-weighted aggregation for n;, honest clients, each with
d model parameters, costs O(n;, - d). Thus, the total computational
complexity is:

O(Nipta - F)+O0@m - 1) + O(ny, - d). (10)
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Algorithm 1: Proposed CAD Framework

. Initiali =0
Input: Initialized global model 77 .,

number of clients N, numger of rounds T.

. T
Output: Updated global model eglobal.

local datasets {D;} ,11 »

1 for eachround t=1,...,T do
2 Step 1: Local Training - Client
3 for each client C;, i=1,...,N do

4 Train model 6’ on dataset D, based on 6“1 .
i global
: r_ L Nt

5 Compute confidence score o] = N ij Lo

6 end

7 Step 2: Confidence Normalization - Server

8 Normalize scores S’ = {¢{} by min-max scaling:

; S’ — min(S")

norm = 11ax(S7) — min(S7)”
9 Step 3: Malicious Client Detection - Server
10 Cluster by two-way k-means:

— L t
=k means(Snorm,

t t
{”lower’ ﬂupper } 2)'

Classify clients into honest H or malicious M:
t_ q; t t t t
H' ={i|lo; _”upperl <lo; _Mlowerl}'

1 Step 4: Re-weighted Aggregation - Server

12 Compute final weights:
t ot o
wfinal,i - rnorm,i worig,i'

Aggregate global model:
ZieH’ w;inal,i : 9: 37

0 ;
Yien Whnal,i Zi

t —
global —

Step 5: Model Distribution - Server
13 Distribute the global model Gglobal to clients.

14 end

15 return 67 . .
global

Overall, the proposed method introduces minimal additional com-
putational overhead compared to traditional approaches, ensuring effi-
ciency and scalability for large-scale systems.

3.4.2. Communication overhead

The proposed method significantly reduces communication costs
by excluding malicious client updates compared with conventional
federated learning methods. In conventional federated learning, all n
clients upload their model updates to the server, resulting in a commu-
nication cost of O(n - d), where d is the number of model parameters.
In contrast, the proposed framework identifies and excludes malicious
clients, reducing the cost of model uploads to:

Ol =n)-n-d), 1D

where 7 is the proportion of malicious clients. Each client also transmits
a scalar confidence score, which incurs a negligible additional cost of
O(n). After aggregating the updates, the server broadcasts the global
model to all clients, costing O(n-d). The total communication overhead
is O((1-n)-n-d)+0(n)+O(n-d), which simplifies to O((2—#)-n-d). This
reduction is particularly beneficial in IoT systems, where bandwidth is
often limited, and many clients may be malicious. For example, with
n = 0.5 (50% malicious clients), the communication cost is halved
compared to traditional methods.

4. Experiments and evaluations

Our evaluation aims to address the following questions:
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1. Can prioritizing updates based on confidence scores enhance
model robustness against various attack intensities?

2. Does the re-weighted aggregation mechanism improve model
performance compared to baseline defenses, especially under
severe attacks?

3. How does CAD compare to state-of-the-art defenses regarding
malicious client detection, model accuracy, stability in diverse
datasets, models, and data heterogeneity?

4.1. Experimental setup

In the following, we detail the experimental setup, including
datasets, DNN models, attacks, and defenses.

4.1.1. Datasets and evaluation metric

We evaluate CAD on a wide range of FL benchmarks, including:
CIFAR-10 [46], MNIST [47], and Fashion-MNIST [48], commonly used
in prior studies [16,17]. We employed a heterogeneous partitioning
strategy to create non-IID local data where samples and class distri-
butions are unbalanced among clients. The factor is sampled from a
Dirichlet distribution Diry(a) [49], with « determining the level of
heterogeneity, We illustrate the influence of « on data heterogeneity in
Fig. 4. We observe that a smaller « value refers to high heterogeneity.
We set a = 0.5 to reflect a severe attack environment following the
conventional setting [15]. We evaluated the performance of the model
via classification accuracy. Although our experiments focus on image
classification datasets, the CAD framework is model- and task-agnostic.
It can be applied to any federated learning setting where models
produce confidence scores or predictive probabilities

4.1.2. DNN models

We tested CAD model on three representative DNN models, in-
cluding: AlexNet [50], VGG-11 [51], and a Multi-Layer Perceptron
(MLP) [52] with layers consisting of 784, 512, and 10 neurons re-
spectively. Specifically, AlexNet and VGG-11 were employed for the
CIFAR-10 dataset, the MLP for MNIST, and AlexNet for Fashion-MNIST.

4.1.3. Baseline defenses

We compared CAD with state-of-the-art defense models including:
TrimMean [14], AFA [53], FLDetector [15], DeFL [16], FedRoLA [17].
Additionally, we included FedAvg [24] as a baseline method for com-
parison. We consider two settings regarding the adversary’s knowl-
edge [16]: (a) Full, where the adversary knows the gradients of honest
clients, and (b) Partial, where the adversary is unaware of the gradient
updates shared by honest clients. We evaluated the malicious client
detection performance by measuring the True Positive Rate (TPR) and
the False Positive Rate (FPR).

4.1.4. Malicious client attacks

We evaluate the CAD model under two common malicious client
attacks: model poisoning and data poisoning. Below, we detail the
mathematical formulations of attack strategies.

+ Label Shuffling (LS) [9] is a type of data poisoning attack where
malicious clients randomly reassign labels in their local dataset.
This introduces noise into the training process and misleads the
global model. For a malicious client C,,, the poisoned dataset is
generated as:

D, ={(x,9) | (x;,y) €D, = Sthﬂe(y,-)},

where shuffle(y;) represents a random reassignment of the true
label y;. This results in incorrect patterns the global model learns,
degrading its performance.
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Fig. 4. Client-class distributions for different a values in a federated learning setting for different data heterogenesis. Larger points indicate higher sample sizes, with the x-axis

showing clients and the y-axis showing classes.

« Little is Enough (LIE) [54] is a model poisoning attack where
malicious clients add noise to the aggregate gradients of honest
clients. Let {VHL }".‘zl represent the gradients from k honest clients.
The adversary computes the mean and standard deviation of these
gradients:

El
M~

k
_1 i _ i

"‘EEVG’ o= '1(V9n‘/‘)2~

The malicious gradient is then crafted as V0,, = u+ z - o, where z

is a noise coefficient chosen to evade detection.

Min-Max (MM) [55] is a model poisoning attack where malicious

gradients are equidistant from the cluster of honest gradients,

maximizing disruption while remaining undetected. Let d(-,-) de-

note the Euclidean distance. The malicious gradient V§,, satisfies:

i

dve,,veh < dve™ v,
he?ll,z.i.)ik} (V0. V6) _hl,hzrg(al).(m,k) (VO 0

This ensures the malicious gradient stays within the range of
honest gradients but disrupts model convergence.

Min-Sum (MS) [55] is another model poisoning attack, where
malicious gradients minimize the sum of squared distances to all
honest gradients. The adversary computes the malicious gradient
Vé,, by solving:

k
Y dwe,.vert< Y d(ve, . Ve
h=1 hyhy€ll,... k)

To maximize the attack, malicious clients use identical V@,,.

4.1.5. Implementation details

We simulated N = 50 clients in the experiments. Each client was
trained to update its local model for 20 local epochs using the stochastic
gradient descent (SGD) optimizer. The number of FL training rounds
was set to 200 to ensure convergence for all DNN models. The learning
rate was set to 0.01. The batch size was set to 16, with a weight
decay of 1 x 1073. We evaluated the robustness of our CAD model
under three degrees of attack severity defined by the percentage of
malicious clients: moderate (25%), severe (50%), and extreme (75%). For

data poisoning attacks, confidence scores were directly obtained during
model training. For model poisoning attacks, confidence scores were
obtained by further running inference on local training data before
sending it to the parameter server. The implementation is done in
PyTorch [56] and the experiments are ran on NVIDIA A100 GPU.

4.2. Experimental results

4.2.1. Robustness under various attack intensities

We evaluated the robustness of the proposed CAD model and other
state-of-the-art defenses under different levels of attack intensity with
the CIFAR-10 dataset with the VGG model. The results, as shown in
Table 3, indicate that under moderate attacks (25% malicious clients),
most defense methods perform reasonably well, with our CAD model
achieving the highest accuracy across all attack types. However, as
the intensity of the attacks increases to severe (50%) and extreme
(75%), the performance of most methods significantly deteriorates.
In contrast, the CAD model consistently maintains high accuracy and
robustness by outperforming other methods under all attack intensities.
This demonstrates the effectiveness of our confidence-based detection
and re-weighted aggregation approach in mitigating the impact of
various attack types, even under severe attack conditions.

4.2.2. Applicable to various models and datasets

Table 4 compares the performance of CAD with other state-of-the-
art defense methods across different models and datasets. The results
demonstrate that CAD consistently outperforms other defenses with
high accuracy under various attacks. For MNIST dataset with MLP
model, most defense methods perform well under label shuffling at-
tacks, but CAD achieves the highest accuracy across all attack types.
Similarly, for Fashion MNIST dataset with AlexNet model, CAD main-
tains superior performance, especially against LIE and MM attacks,
where other methods significantly collapsed in accuracy. In the CIFAR-
10 dataset, both with VGG-11 and AlexNet models, the robustness of
CAD stands out. While other defenses struggle to converge, particularly
under LIE and MM attacks, CAD consistently achieves the best results.
This highlights the effectiveness of our method in providing robust
defense against various attacks, even under different model and dataset
combinations. These results demonstrated that CAD is not only effective
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Robustness to various modes of attack on CIFAR-10 with VGG-11 model. Best results are shown in bold.

Intensity Defence Min-Max Min-Sum LIE Label Shuffle
Full Partial Full Partial Full Partial Full Partial
FedAvg 55.40 64.37 49.44 59.20 49.84 52.89 68.32 68.60
TrimMean 53.69 61.35 51.58 60.33 31.63 34.22 65.20 65.20
Moderate AFA 68.89 68.71 68.99 69.17 69.09 68.80 68.88 69.09
(25%) FLDetector 32.66 32.37 25.93 35.61 61.94 56.92 39.74 46.32
° DeFL 65.67 69.04 62.97 68.74 48.02 51.51 67.95 68.57
FedRoLA 69.23 69.03 68.59 68.76 68.67 68.95 68.48 68.59
CAD (Ours) 69.85 69.43 69.94 69.43 69.67 69.18 69.36 69.47
FedAvg 19.02 18.37 21.40 22.25 12.94 15.04 62.91 62.70
TrimMean 16.92 17.27 17.49 17.20 11.55 12.35 37.26 36.88
Severe AFA 16.65 17.89 15.42 17.42 10.42 10.56 60.32 60.85
(50%) FLDetector 23.61 20.02 20.47 20.73 14.41 11.96 34.84 38.81
° DeFL 21.60 27.50 48.26 48.26 23.17 23.95 63.02 62.31
FedRoLA 19.52 19.60 21.40 22.10 13.42 14.17 62.52 61.98
CAD (Ours) 64.00 65.07 64.75 65.13 64.44 64.96 64.27 64.19
FedAvg 16.71 17.72 17.79 17.60 10.56 12.08 50.51 53.46
TrimMean 14.57 15.03 17.52 16.60 10.01 10.42 21.17 20.23
Extreme AFA 11.54 11.62 13.84 10.03 10.06 10.51 20.23 22.17
(75%) FLDetector 16.71 17.72 17.79 16.31 11.04 12.08 18.33 18.04
° DeFL 20.11 19.44 19.42 20.02 16.06 16.76 52.18 52.72
FedRoLA 16.71 16.86 17.79 17.59 10.00 10.00 54.39 52.46
CAD (Ours) 56.96 57.04 56.88 56.48 56.75 56.54 57.68 57.79
Table 4 , , Full Partial
Defense robustness across various models and datasets. Test accuracy of different
defense methods with various attacks across different models and datasets under severe 6
attack settings. The best results are shown in bold. % 5 65
>
Model Defence MM MS LIE LS 2 8
£
FedAvg 19.02 21.40 12.94 62.91 % 360 60
8]
. Y NS Lo we wm BE ) g —— rasng
ifar etector X . . . a
(VGG-11) DeFL 21.60 4826 2317  63.02 55 CAD (Ours) j1 55 CAD (Ours)
FedRoLA 19.52 21.40 13.42 62.52 01 03 05 0.7 0.9 0.1 03 05 0.7 09
CAD (Ours) 64.00 64.75 64.44 64.27 ’ ’ ’ ’ ’ ’ ’ ) ’ ’
FedAvg 1986 1975 1016  59.63 60 — T ./'/‘,.Fﬂ
AFA 18.68 19.47 10.01 57.02 > 60
Cifarl0 FLDetector 17.24 17.17 10.00 32.47 w §
(AlexNet) DeFL 30.69 49.05 18.98 59.42 5 340
FedRoLA 19.52 19.75 10.16 59.33 5]
<
CAD (Ours) 62.92 62.60 62.90 62.76 20 = FedAvg 40 —— FedAvg
—=— CAD (Ours) —=— CAD (Ours)
FedAvg 78.71 74.58 15.66 88.06
Fashion AFA 23.70 23.70 10.00 88.56 01 03 05 07 09 0.1 03 05 07 09
MNIST FLDetector 78.37 74.98 10.00 76.51 a for Diry(a) a for Diry(a)
(AlexNet) DeFL 87.73 86.83 10.11 88.25
gZdROBA 78.09 74.58 15.66 88.05 Fig. 5. Robustness to data heterogeneity by varying degrees of Non-IID data, as
D (Ours) 88.43 83.32 87.86 88.79 controlled by the parameter a in the Dirichlet distribution Dir(a). The improvement
FedAvg 95.81 94.47 52.45 97.36 over the FedAvg baseline is shown in the blue shaded area.
AFA 94.33 92.70 11.35 96.73
MNIST FLDetector 93.24 92.36 45.60 96.92 4.2.4. Malicious clients detection accuracy
(MLP) DeFL 94.29 93.29 88.90 97.47 :
val h ion performan f our pr AD
FedROLA 05,81 0147 45 9740 We evaluated the detection performance o .ou p c.)pos.ed C
CAD (Ours)  97.87 o773  97.08  97.83 model under LIE and label shuffle attack scenarios considering both

in mitigating attacks for a specific benchmark but also adaptable to
various models and datasets, thereby making it a reliable defense
method.

4.2.3. Robustness to data heterogeneity

We further investigated the robustness of CAD across different levels
of data heterogeneity by varying the key parameter « in the Dirichlet
distribution Dir(a). A smaller « indicates a higher degree of non-IID
data. We simulated a moderate LIE attack and a severe Label Shuffle
attack on the Cifar10 dataset with VGG-11 model. As shown in Fig. 5,
as the non-IID degree decreases (i.e., , as a increases), the global model
accuracy improves at a much higher rate compared to FedAvg, as
indicated by the blue shaded area, consistently under both Full and
Partial scenarios. These results confirm the robustness of our CAD
model to varying data heterogeneity.

moderate and severe intensities. The evaluation was conducted on the
Cifar10 dataset with the VGG-11 model at full attack setting. As shown
in Fig. 6, our CAD model can accurately detect malicious clients, and
converge to high TPR and low FPR after only a few training rounds.
Therefore, it can exclude malicious clients and lead to a significant
improvement in overall performance, as shown in the blue line over
the orange line. Its advantage is more obvious when more clients are
being attacked, with detection accuracy remaining high and stable
even under severe attack conditions while the FedAvg was collapsed.
This demonstrates that CAD is effective under varying intensities and
thereby significantly enhances model performance compared to the
FedAvg baseline.

4.2.5. Impact of re-weighting

We ablated the impact of the re-weighting operation and the results
are shown in Fig. 7. It can be observed that the re-weighting opera-
tion can consistently enhance performance, especially at higher attack
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Fig. 6. Malicious client detection accuracy evaluated on the Cifarl0 dataset with the
VGG-11 model.

—e— MinSum MinMax —— LabelShuffle —— LIE

<
<50 5.0
Q
Q
<
825 25
>
o
£00 - 0.0

Moderate Severe Extreme
(b) Partial attack

Moderate Severe Extreme
(a) Full attack

Fig. 7. Effect of applying re-weighting model accuracy across different attack inten-
sities. For each level of attack severity, there are four bars representing different
attackers. As attack intensities increase, we can observe consistent improvements with
particularly noticeable under “Severe” and “Extreme” conditions.

rates. The improvement is particularly clear in “Severe” and “Extreme”
conditions, with detecting attacks like LIE and MinSum benefiting the
most. This effectiveness is likely due to the fact that only a few honest
clients remain under high attack rates, therefore, it is crucial to identify
and prioritize them. This further demonstrates that the confidence score
is a reliable metric for assessing the quality of client models, thereby
supporting the underlying assumption of our confidence-aware CAD
framework.

4.3. Limitations and discussion

One challenge in the proposed CAD framework is handling dynamic
attack strategies where malicious clients adapt their behavior over time
to evade detection. Such adversaries may alter updates or confidence
scores to resemble honest clients, which reduces the effectiveness of
static clustering in distinguishing between the two groups. For ex-
ample, overlapping confidence scores between malicious and honest
clients can lower detection accuracy, especially against sophisticated
and evolving threats. To address this limitation, future research could
focus on adaptive or online learning techniques that update the de-
tection mechanism based on real-time and historical data, and also to
consider the anonymity between identity and model updates [57] to en-
sures accuracy and cost-effectiveness client selection against advanced
adversaries. By doing so, CAD can adjust clustering boundaries dynam-
ically to account for changes in attack patterns, and further improve
robustness against advanced strategies. While the CAD framework
improves the robustness of federated learning systems by leveraging
confidence scores from client models, this design introduces potential
privacy risks. Confidence scores, although less sensitive than raw data,
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may still leak information about a client’s local data distribution or
training data characteristics. For instance, consistently high or low
confidence in specific classes could reflect underlying data imbalances
or user-specific preferences. An adversary with access to these scores
may be able to infer sensitive properties of a client’s dataset, such
as data scarcity, class distribution, or even the presence of specific
categories. To address this issue, future work may explore incorporating
techniques such as differential privacy or confidence score obfuscation
to further enhance privacy protection.

5. Conclusion

In this paper, we proposed the CAD model, an attack defense
mechanism for FL that achieves accurate malicious client detection
to address both model poisoning and data poisoning attacks. The
proposed CAD model estimates per-client confidence scores to reflect
the model’s uncertainty, which are then referred to identify clients into
honest and malicious categories. By re-weighting the contributions of
honest clients based on their confidence scores, Extensive experiments
conducted on various benchmarks with non-IID data demonstrate that
CAD significantly improves the accuracy, stability, and robustness of FL
systems against specific poisoning attacks. However, further evaluation
is needed to assess its effectiveness against adaptive adversaries that
may evolve to evade confidence-based detection. Besides, our current
approach assumes a fixed binary partition (k=2) between honest and
malicious clients. While this assumption works well when a client is
either fully honest or fully malicious, it may overlook more nuanced be-
haviors, such as partially poisoned clients, or clients switching between
honest and malicious behaviors. Future work could explore adaptive or
soft clustering techniques to better capture these behaviors, along with
experimental evaluations against such sophisticated attackers.
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