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Defending Deepfakes by Saliency-Aware Attack
Qilei Li, Mingliang Gao , Guisheng Zhang, and Wenzhe Zhai

Abstract— With the rapid development of deep learning, espe-
cially the generative adversarial network (GAN), face modifica-
tion has been substantially advanced and enables the generated
images to look more realistic. Given an image or a video frame
of a person, such a system can create fake images, which
manipulates the movement, expression, and even appearance,
e.g., hair color, eye color, and age. Such a system is termed
Deepfake, which has raised significant ethical issues, especially
for celebrities. With the pretrained Deepfake models being widely
available on the Internet, its negative applications, such as face
manipulation and pornographic generation, have exposed the
dark side of the Deepfake technology to the sociocyber world.
In this article, we aim to defend a well-trained Deepfake model
by manipulating the raw image with unperceived perturbation.
To minimize the alterations to the original image while effectively
fooling the Deepfake model, we propose to selectively perturb
only the foreground person region and maintain the irrelevant
background. This is based on the observation that the salient
object in a person’s image is always the foreground face region.
Such a strategy introduces negligible alterations to the original
image, which makes the attack remain effective. We experi-
mentally demonstrate the superiority of the proposed attacking
framework over the existing models and show our approach is
ready to be applied for out-of-the-box development.

Index Terms— Deepfake, face image, generative adversarial
network (GAN), model attack, saliency detection.

I. INTRODUCTION

GENERATIVE adversarial networks (GANs) have been
rapidly developed in the last decade. By training in a

zero-sum manner, GANs are capable of generating realistic
images with random sampled noise. It has been widely adopted
in artist creation, image superresolution, and multimodal infor-
mation fusion. One of the most popular applications is face
generation, which is termed Deepfake. It aims to manipulate a
face image to create new counterparts, which reveal different
poses, emotions, and even attributes, such as hair color, gender,
or even race.

Although it allows creative generation of new nonexisting
people, it inevitably brings negative dark-side influence to
society. For example, with the wide availability of large-scale
trained Deepfake models, anyone can simply deploy these
models to modify face images for the own purpose without
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the consent of the belonging person. It has been known to all
that some face images of the celebrities have been maliciously
manipulated for explicit content, which brings them substantial
harassment. Because of the arousal of such bad behaviors and
negative concerns due to Deepfake, some companies, such as
Facebook, have carried out the corresponding policy to avoid
the uploading of the generated content from Deepfake.

To mitigate such an issue, one intuitive remedy is to derive
a detector that is dedicated to distinguishing whether one
image has been modified. There has been a wide range of
explorations in this direction in recent years [1], [2]. However,
given these models are mostly based on deep learning and
there are inevitably domain shifts between the training data
and the test data, the performance of these detection systems
is not guaranteed.

Apart from detecting the image to distinguish manipulation,
another way is to attack the trained generation model so as
to make the generated images less realistic and be easily
distinguished by human eyes. This is based on the observation
that deep neural networks are sensitive to adversarial attacks,
which has been widely validated in the classification models
[3], [4], [5]. By changing a bit the pixel value of the raw
image, owning to the deep structure of the network, the
corresponding values on the feature maps are dramatically
different; therefore, the generated output will not follow the
pretrained patterns. Such attacks, based on the knowledge of
the target model, can be categorized into three classes [6].
The most simple but unrealistic class is called the “white-box”
attack. Under this condition, the attacker is expected to have an
entire understanding of the model, such as the parameters and
the architecture, so that it is dedicated to this kind of model.
However, it cannot be generalized to other models under
different scenarios. Oppositely, there is another kind of attack
named “black-box” attack, which assumes that the attacker is
blindly unaware of the model. This condition is more versatile
but less effective as it ignores the data characteristics. The third
category is the “gray-box” attack, in which the model and the
parameters are expected to be known, whereas the defense,
such as image preprocessing, remains unknown.

Given the gray-box condition is more realistic and can
be easily satisfied, recent works [4], [7] mostly focus on
this condition. The general idea for a Deepfake attack is
to perform image perturbation that is invisible to human
perception. Such image perturbation is expected to cause
significant interference in the image translation network. The
evaluation protocol for the attack is that the generated images
significantly deteriorated and can be distinguished to be fake
by human eyes. The general idea of a Deepfake attack is
shown in Fig. 1. Some recent works [6], [8] designed different
kinds of attacks, such as blur attacks, feature attack, and class
condition attack. However, these attackers perform distribution
on the whole raw image and inevitably harm the image details,

2329-924X © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on March 06,2025 at 11:52:08 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0001-7273-7499
https://orcid.org/0000-0003-0996-6832


LI et al.: DEFENDING DEEPFAKES BY SALIENCY-AWARE ATTACK 5061

Fig. 1. (a) Deepfake model inference. By feedforwarding a face image into the Deepfake system, which includes a pretrained deep model, a realistic face
image that manipulates the original input can be generated. (b) Defending Deepfake by the saliency-aware attack. By attacking the Deepfake system with the
disturbed input image on the salient area (face region), the generated image is less realistic and can be easily distinguished by human eyes.

even if it is irrelevant to the person of interest, i.e., the
background.

In this work, we solve the side effect caused by the unneces-
sary attack and propose the saliency-aware attack to minimize
the information loss caused by image perturbation. Specifi-
cally, given a face image, we aim to separate the discriminative
person region (i.e., face) out of the person’s irrelevant region
(i.e., background). Given the nonexistence of the fine-grained
saliency label that indicates the face region, we propose to
use weak labels provided by the saliency detection model that
is well trained on large-scale datasets. This is based on the
assumption that the face region is dominantly salient in a
face region. The contemporary Deepfake models are trained
to solely manipulate the facial attributes rather than the back-
ground, which also provides rich details to human perceptual
systems for scenario understanding; therefore, there is no need
to redundantly perturb background regions. With this observa-
tion in mind, we design the saliency-aware attack framework
to adaptively disrupt the face images only in the salient region
and to prevent information loss in the background region.
By integrating the proposed attack framework into any existing
Deepfake model, the perturbed input images lost fewer details,
whereas the generated images are significantly noisy and so
can be easily distinguished by human eyes.

In summary, the contributions are threefold.

1) We claim that the current Deepfake attackers can be
further improved by focusing on the foreground face
region in a targeted manner and can avoid the distribu-
tion of the face-irrelevant background region. Preserving
the background can enhance the explainability of the
disrupted image and facilitate human understanding.

2) We implement this regularization with the designed
saliency-aware attack framework, which can separate
the facial region from the irrelevant background region.
Instead of exhaustively labeling images manually, the
proposed framework utilizes weak labels from a pre-
trained saliency detection model to generate the mask
for the face region.

3) We derive the saliency-aware attacker as a universally
applicable framework, which can be adapted to any
existing Deepfake models in a plug-and-play manner.
Experimental results prove that it can maintain equiv-
alent attack performance while minimizing the loss of
image details, compared with the state-of-the-art (SOTA)
works.

The rest of this article is structured as follows. In Section II,
some recent works that are related to the proposed framework
are listed. Section III details the proposed method. Section IV
shows the experimental results as well as the ablation studies.
In addition, this article is concluded in Section V.

II. RELATED WORK
A. Generative Adversarial Networks

The advancement of GANs enables the generation of highly
realistic face images, which are difficult to be distinguished by
human eyes. The first GANs model was originally proposed
in 2014 by Goodfellow et al. [9], which marked a landmark
in generative models. GANs are a special type of neural
network, in which two components, namely a generator and
a discriminator, are trained simultaneously, with the former
focusing on image generation and the latter centering on
distinguishing the generated image. GANs produce reasonably
satisfying output through a dynamic zero-sum game consisting
of a generator and a discriminator. The GAN’s greatest appeal
lies in the universality of the kind of confrontation mechanism,
which is believed to have made breakthroughs in the complex
research areas of many target functions. Although it brings
us a lot of conveniences, the GAN has been used to generate
adult content and disinformation, which has a bad impact on
politics and public privacy.

Recent attempts have significantly advanced realistic image
generation using GANs. In 2017, Zhu et al. [10] introduced
a new GAN model termed CycleGAN. Different from the
traditional GANs that are composed of only a single generator
and a discriminator, CycleGAN consists of two generators and
two discriminators. The CycleGAN model solves the one-to-
one problem, which is the translation from one domain to
another. When there are many domain transformations, each
domain transformation should retrain a model to solve the
problem. In consequence, for training across multiple domains
and multiple datasets, CycleGAN performs poorly. This issue
was taken a step further in 2018 by Choi et al. [11] who
put forward a StarGAN model. Different from the traditional
GANs in which the image transformation is predefined in a
deterministic manner, e.g., black-to-blond hair, StarGAN also
considers the representative domain information as the input
during the model training phase. In 2020, Choi et al. [12]
introduced a StarGAN v2 model based on StarGAN. This
model is mainly designed to solve the problem of converting
the image of one domain into multiple images of the target
domain and supporting multiple target domains. The work
showed that the StarGAN v2 model can generate images with
rich styles across multiple domains.

Another representative work termed GANimation [13] was
proposed to generate face images with expressive facial
expressions. In contrast to the previous GANs, GANima-
tion designs the network in an attentive learning framework
by focusing only on the relevant region in conveying the
novel expression. Furthermore, Geng et al. [14] designed
a fine-grained face manipulation model to synthesize face
images of one person with diverse expressions.
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Fig. 2. Examples of face image manipulation by Deepfake model on StarGAN. The first column is the original input, and the following columns are the
generated images by changing different facial attributes.

In this work, we use the large-scale trained StarGAN model
to generate face images by modifying different attributes and
apply the proposed saliency-aware attacker on the raw images
to defend this well-trained StarGAN model.

B. Deepfake
Deepfake is a kind of artificial intelligence technology that

uses the machine learning model of GANs [9] to alter face
images. It was first created by a Reddit user in 2017 as
a script used to generate face-swapped adult pornographic
content [15]. The technology of making fake images or videos
is also known as AI face swap in the industry. The core
principle is to use algorithms, such as GANs or convolutional
neural networks, to graft the face of the target object into
the imitated object. Specifically, first, the target face features
are extracted, and then, the target imitation object’s face is
replaced by the target object’s face. Finally, the target images
are resynthesized into fake images.

Deep learning technology can automate this process, and
this approach enables the common encoder to discover and
learn the similarities between two sets of input face images.
This is relatively unchallenging for the encoder because faces
usually have similar features, such as eye, ear, and mouth posi-
tions. Examples of face image manipulation by the Deepfake
model are shown in Fig. 2.

As deep learning technology is gradually applied to Deep-
fakes, facial images synthesized by the Deepfake technology
are becoming more and more realistic. It has been used
positively for several applications [16], [17]. Deepfakes could
boost photography, virtual reality, filmmaking, and the econ-
omy. Moreover, it can make people’s life more convenient.
For example, people can choose clothes online, try different
styles by using Deepfake technology, and use it to generate
photos of loved ones who have passed away. However, the
malicious use of Deepfakes is on the rise. It is often used to
produce false news or some adult content [18], [19], [20], [21],
e.g., Deepfakes have the potential to spread untrue information
about candidates and other political leaders. Even if this fake
news turns out to be fake, it could still stick in voters’ minds
and change their perceptions of the characters in it.

The main uses of Deepfake technology are pornography,
political subterfuges, extortion, and financial fraud, and con-
tents produced by Deepfakes are difficult to distinguish for
humans. Therefore, in this work, we used some adversarial
attacks [6], [22], [23] to reduce the fidelity of the synthesized
face images.

C. Deepfake Attack
A Deepfake attack aims to deceive neural network models,

such as image forgery and target recognition, by adding noise
that is unperceptive to the human eye so that the images or
videos produced by these models can be recognized by the
human eye.

There are plenty of works [5], [24], [25], [26] that conduct
adversarial attacks in deep classification networks. Goodfellow
et al. [4] explore a fast gradient sign method (FGSM), which
significantly enhanced the utility of adversarial examples and
provided an alternative regularization method to traditional
regularization methods. The iterative FGSM (I-FGSM) is also
a representative iterative attack, which was introduced by
Kurakin et al. [7]. The key idea of I-FGSM is to iteratively
perform gradient sign operations on the original images. This
work demonstrates the feasibility of adversarial examples for
machine learning systems in the real world. Besides, Madry
et al. [23] studied the adversarial robustness of neural networks
through the lens of robust optimization, and another stronger
iterative attack, projected gradient descent (PGD), has been
proposed by them in 2017. Based on the previous adver-
sarial sample generation, Athalye et al. [22] made a further
study on physical environment transformation to perturb raw
images. Athalye et al. [22] also proposed the expectation-over-
transformation (EoT) method as a further exploration, which
inspired the real-world antagonist who proves the existence of
a 3-D antagonist. Furthermore, Ruiz et al. [6] proposed a faster
heuristic iterative spread-spectrum disruption for evading blur
defenses.

Recent work by Yeh et al. [27] explored two types of
adversarial attackers by designing a novel adversarial loss
function to adversarially learn the blurred and distorted outputs
jointly so as to optimize the network with gradient descent.
Huang et al. [28] proposed a novel antiforgery model by
disrupting the manipulation model in a black-box setting,
which can incessantly generate perceptual-aware disruption.

In this work, unlike the aforementioned methods, which
manipulate the whole image to attack the Deepfakes, we
propose a saliency-aware attack framework, which selectively
focuses only on the discriminative face region, so as to
minimize the alterations to the raw image and preserve more
details.

D. Saliency Detection
The core idea of saliency detection is to extract important

information from the picture and enable the network to pay
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Fig. 3. Few samples of face images. From top to bottom, first row: Face
images. Second row: Saliency maps. Third row: Disrupted images. Fourth
row: Generated images by Deepfake from disrupted images.

more attention to significant areas in the picture. In recent
years, image saliency detection has made great progress, espe-
cially since the method based on deep learning has achieved
superior performance.

According to a survey by Borji et al. [29], image
saliency detection methods can be classified into bottom-up
model [30], [31], [32] and top-down model [33], [34], [35].
The bottom-up approach is based directly on the primary
information, such as contrast, whereas the top-down approach
takes into account our analysis of goals and scenarios.
Qu et al. [36] designed an RGBD saliency detection model
based on the conditional random field under superpixels.
They made full use of the advantages of different modal
cues, effectively integrated them, improved the performance
of the saliency detection model, and played a role in the field
of visual-driven applications. First, Hanet et al. [37] exposed
the cross-modal discrepancy in the RGBD data and proposed
two cross-modal transfer learning strategies.

There are several works [38], [39] that have been done to
capture the comprehensive and implicit attributes from the fea-
ture map. An anisotropic center-surround difference (ACSD)
measure with 3-D spatial prior refinement was introduced by
Ju et al. [38], which combines both depth-based background
estimation and learning-based direction contrast weighting.
Guo et al. [39] proposed a novel salient object detection
method for RGBD images based on an evolution strategy. This
model fully explored the potential of color cues and depth cues
in the whole procedure of salient object detection saliency
propagation.

It is known that the feature maps extracted in different
layers encode heritable information captured at different scales
under different levels of receptive files. These multiscale
features contribute to the saliency detection model with diverse
knowledge. One recent work PFAN [40] was proposed by
Zhao et al. to attentively reweighting the feature maps at
different hierarchies. In PFAN, the high- and low-level features
are processed by the channel and spatial attention modules
to highlight the significant representation while suppressing
the insignificant ones, so as to boost the network in learning
discriminative detection capacity.

In this work, to generate a weak label for the foreground
face region, we employ PFAN [40] to generate a saliency map,
which can naturally identify the dominant face region as the
saliency region.

III. DEFENDING DEEPFAKE BY SALIENCY-AWARE ATTACK

In order to defend Deepfakes from generating realistic face
images, one effective solution that has been extensively studied
is to disrupt the input image with ideally imperceptible noise.
This is based on the observation that deep learning-based
models generally follow the independent identically distribu-
tion (IID) assumption, and once the test data have different
distributions from the training data, the performance of a
well-trained Deepfake model can drop significantly. However,
disrupting the input face image will inevitably bring negative
influence to image quality and will hinder human perception.
The tradeoff between disruption and interpretability is merely
considered by previous methods. In this work, we aim to
effectively attack Deepfake models by perturbing the input
face image while minimizing its degradation. This is realized
by the saliency-aware attack, which adaptively disrupts only
the foreground face region to fool the Deepfake generator.

A. Overview
The ultimate goal of the proposed saliency-aware attack is

to defend Deepfake models by imperceptibly disrupting the
salient face region on the input image, so as to achieve an
effective attack with minimal image information loss. This
framework is formulated in three steps: 1) detection of the
salient face region in the input face image to get the face
mask (Section III-B); 2) imperceptibly perturb the face image
in a saliency-aware manner (Section III-C); and 3) feedforward
the putter face image into the Deepfake model to get the
generated image (Section III-D), which is expected and can
be distinguished by human eyes. The overall framework of
the proposed method is shown in Fig. 4.

B. Salient Face Region Detection
Given a face image as the input for the Deepfake system,

the face region is attentively the target area for manipulation.
In order to better disrupt the input image for a Deepfake attack
with less information loss, it is nontrivial to accurately separate
the face region of the face-irrelevant background. However,
given the nonexistence of masks for the face region, it is
highly expensive and even impossible to label manually for
all the images. Therefore, considering that the face region is
intuitively the salient part of a face image, this face mask
generation task can naturally be transferred as a salience
detection counterpart.

By tasking the recent advantage of saliency detection, which
is to locate the dominant part of one natural image, the weak
label can be easily obtained by simply feeding the original
input image to a pretrained saliency detection model. Denoting
an input image as Iori and a trained saliency detection model
as fsa(·), the saliency mask is calculated as

M = fsa(n(Iori, µ, σ ), θ f ) (1)

where n(·) is the normalization operation to diminish the
numerical scale variations of the raw input image based on
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Fig. 4. (a) Deepfake model inference. By feedforwarding a face image into the Deepfake system, which includes a pretrained deep model, a realistic face
image that manipulates the original input can be generated. (b) Defending Deepfake by the saliency-aware attack. By attacking the Deepfake system with the
disturbed input image on the salient area (face region), the generated image is less realistic and can be easily distinguished by human eyes.

the mean µ and variance σ , and θ f is the parameter of the
saliency model, which is frozen during model inference.

The saliency map M can highlight the dominant face region,
as shown in Fig. 3. Instead of applying postprocessing to
transform it into a binary map, we keep its raw value to
indicate a different level of saliency. This can mitigate the
unavoidable false prediction in the weak label to some extent.
With the saliency map M , the foreground face region is
obtained as

Iface = Iorg(x, y) × M(x, y). (2)

Remark: The saliency map M as the wake label to indicate
the face region is obtained by utilizing the pretrained detection
model, which is cheap and can be computed in real time.
By applying the saliency map to separate the foreground
region, the subsequent perturbation will not influence the
background, hence leading to less perceptual detail loss.

C. Saliency-Aware Image Perturbation

Though contemporarily deep learning-based models have
achieved significant performance improvement compared with
traditional methods, they generally follow a simple and unre-
alistic assumption that the training data and the test data are
collected in the same distribution, which is termed independent
and identical distribution (IID). Once this assumption is no
longer satisfied, the performance of a well-trained model can
significantly drop. This observation is also applicable to the
Deepfake model. In order to attack a pretrained Deepfake
model, a straightforward yet effective solution is to break the
IID assumption by altering the distribution of the input data,
which is realized by disrupting the image as

Iptb = Iorg + ϵ (3)

where Iptb is the perturbed face image, and ϵ is a human-
imperceptible disruption that can be Gaussian noise or an
adversarial noise. Given the perturbed image Iptb as the input,
a Deepfake model can output a generated image Optb, which
is expected to be highly unnatural and, therefore, to bring to
notice that the corresponding source image is untrustworthy.
Although manually disrupting the input face images in such a
way can break the IID assumption so as to attack the Deepfake
model, it unavoidably sacrifices the image quality and lost
facial details. There exists a balance between disrupting the

face input and preserving the image detail. However, this trade-
off is always omitted in the literature. We address the issue by
disrupting the image in a saliency-aware manner. Given the
saliency-aware map M generated by (2), the perturbation is
achieved by reformulating (3) as

ϵptb = M × ϵ, Iptb = Iorg + ϵptb (4)

where ϵptb is the disruption factor that is added to the original
image to achieve perturbation. This saliency-aware perturba-
tion is intuitively equivalent to applying the disruption upon
the face region as

Iptb = (Iface + ϵ) + Ĩ face (5)

where Ĩ face is the nonsalient region, which is the complemen-
tary set to Iface.

Denoting the Deepfake model as g(·), the objectives of the
attack are in the two manifolds.

1) The disrupted image Iptb is expected to maintain maxi-
mum image information, i.e., the perturbation should be
human-imperceptible, which is formulated as

min
ϵptb

L(Iorg + ϵptb), s.t. ∥ϵptb)∥∞ ≤ τ. (6)

2) The generated image from the original input g(Iorg) and
the disrupted image g(Iptb) is expected to be significantly
different, i.e., the perturbation successfully leads to the
degradation of the generated image, which is formulated
as

max
ϵptb

L(g(Iorg), g(Iorg + ϵptb)), s.t. ∥ϵptb)∥∞ ≤ τ. (7)

Remark: In order to attack the Deepfake model with min-
imal sacrifices of the image quality, we propose to distribute
only the salient area. Although the saliency detection model is
trained with natural image rather than purely facial images, it
may unavoidably introduce errors due to labels being weakly
labeled. To mitigate this issue, our solution is to use residual
noise and add it to the original input.

D. Deepfake Model Attack

Given a trained Deepfake model g(·) parameterized by θg ,
which is able to generate a realistic face image g(Iorg) with
the source image Iorg, our objective is to confuse it with a
disrupted sample Iptb, which is called an adversarial attack.
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TABLE I

COMPARISON WITH THE SOTA METHODS. THE BEST RESULTS ARE SHOWN IN RED. ALL L2 ERRORS ARE AMPLIFIED
100 TIMES TO HIGHLIGHT THE DIFFERENCE

Algorithm 1 Defending Deepfake by Saliency-Aware Attack
Input: Deepfake generator g(·), Pre-trained saliency detection model
fsa(·), Input face image Iorg, Disruption magnitude m.
Output: Disrupted face image Iptb, Generated image from the dis-
rupted counterpart g(Iptb).

Using saliency detection to generate saliency mask M as (1).
Applying noise on the face region to get the residual component

by I-FGSM algorithm by (10).
Feeding the saliency-aware perturbed face image Iptb into the

deepfake generator to get the translated image g(Iptb).

One of the most popular attackers is the fast gradient
signed method (FGSM), which was proposed by Goodfellow
et al. [4]. The principle of FGSM is to generate a new sample
toward the direction of gradient descent so as to minimize the
loss, which is formulated as

Iptb = Iorg + m ∗ sign(∇x J (θg, x, Iorg)) (8)

where ∇x J is the cost function for training g(·), and the
multiplier m controls the magnitude of the disruption. The
FGSM algorithm is further improved by iteratively perform-
ing the perturbation and termed I-FGSM [7], which can be
mathematically denoted as

I 0
ptb = Iorg

I t+1
ptb = I t

ptb + m ∗ sign
(
∇x J

(
θg, I t

ptb, y
))

. (9)

These attack models achieved advanced performance in
defending the trained generative models. However, they
unavoidably degrade the image quality after perturbation.

To seek an appropriate tradeoff, we propose the saliency-
aware attack. Specifically, instead of adversarially disrupting
the whole image, we separate the salient face area and add
noise to it only. This process is formulated as

I 0
ptb = Iface

I t+1
ptb = I t

ptb + m ∗ sign
(
∇x J

(
θg, I t

ptb × M, y
))

× M. (10)

Inspired by the recent work [6], to bootstrap the attacker,
the input image is first blurred by a Gaussian smoothing filter
in each iteration.

Remark: By iteratively applying the gradient attack upon
the input, we can get the final perturbed input I t

ptb. Feeding it
into the Deepfake model g, one fake image can be generated,
but it is less realistic and can be obviously distinguished.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Implementation Details
Our saliency-aware attacker adopted the PFAN [40] to

generate the saliency mask. We used a Gaussian blur filter

for image preprocessing. The kernel size was set to 11, and
σ was set to 1. The magnitude of disruption in (3) was 0.1,
and the cost function for the I-FGCA method in (3) was MSE
Loss. The framework was implemented by the PyTorch [41]
framework, and all the experiments were performed on an
NVIDIA A100 GPU.

B. Datasets
The CelebFaces Attributes Dataset (CelebA) [42] is an

open-source dataset. It is a large-scale dataset of real face
attributes. These face images contain abundant face poses with
different backgrounds. Each image in CelebA had been labeled
with five facial feature points and 40 attribute labels. Given
the overwhelming amount of images (202, 599) in CelebFaces,
it is extremely time-consuming to process all of them, and we
sampled images in different scales to evaluate the methods,
namely tiny (100 images), small (500), middle (1000), and
large (2000).

C. Evaluation Protocols
We assessed the performance of the proposed

saliency-aware attack framework from both quantitative
and qualitative aspects. For quantitative evaluation, to
measure the difference between the original face images and
the disrupted image, we adopted L1 and L2 errors as the
metrics. The L1 and L2 errors are defined as the 1-norm,
2-norm, and infinity norm of the difference between Iorg
and Iptb, respectively. Lower errors denote less information
loss. For qualitative evaluation, we visualized the generated
image by the Deepfake framework from the Iorg and Iptb,
respectively.

D. Comparison With SOTA
To validate the proposed saliency-aware attack framework,

we compared it with the SOTA competitors under various
settings [4], [6], [7]. The quantitative evaluation results are
shown in Table I. It can be seen that the proposed attack
framework exhibits superior performance against all other
competitors, on a wide range of benchmark settings with
different evaluation metrics. Our method can always achieve
less degradation on the original image, which provides a solid
foundation for the following attack.

We provided visualizations of the generated image, respec-
tively, from the original and the disrupted images by changing
the different attributes with the widely adopted StarGAN [11].
From Fig. 5, one can see that the proposed method can
successfully defend the Deepfake by making the generated
output being distinguishable with human eyes, whereas the
disrupted images remain informative as the original ones.
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Fig. 5. Visualization of the generated images from the original and disrupted faces images. It can be observed that the generated images from the original
image are realistic, whereas the counterparts from the disrupted images are highly unrealistic and can be easily detected by human. Therefore, we demonstrate
the effectiveness of the proposed attack framework.

The output from the disrupted images has obvious artifacts,
therefore validating that our framework can reliably defend
the Deepfake model.

V. CONCLUSION

A. Discussion
The proposed saliency-aware attack framework can prevent

the Deepfake models from generating real-like face images.

This can protect the privacy of the public and prevent some
ethical issues. However, adding perturbations to the original
face image will inevitably cause degradation to the origi-
nal images, resulting in the loss of information and details.
Besides, our framework is highly driven by the pretrained
saliency detection model, which may not be reliable for
accurately detecting the foreground region and cause the
perturbation less effective.
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B. Summary
In this article, we proposed the saliency-aware attack frame-

work to defend a well-trained Deepfake model by manipulat-
ing the raw image with unperceived perturbation. It is achieved
by selectively perturbing only the foreground person region
and maintaining the irrelevant background to simultaneously
fool the Deepfake model while minimizing the alterations
to the original image effectively. Such a strategy introduces
negligible alterations to the original image, which makes the
attack remain effective. We performed extensive experiments
to demonstrate the effectiveness of the proposed method and
showed superiority over the SOTA methods.
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