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 a b s t r a c t

Generalizable person ReID has significant practical value in challenging the fragile i.i.d. assumption by learning 
a domain-generalizable person representation applicable to out-of-distribution test samples. Existing methods 
explore feature disentanglement to learn a compact generic feature space by eliminating domain-specific knowl-
edge. Such methods not only sacrifice discrimination in target domains but also limit the model’s robustness 
against per-identity appearance variations across views, which is an inherent characteristic of ReID. In this 
work, we formulate Cross-Domain Variations Mining (CDVM) to simultaneously explore explicit domain-specific 
knowledge while advancing generalizable representation learning. Our key insight is that cross-domain style 
variations need to be explicitly modelled to represent per-identity cross-view appearance changes. This approach 
retains the model’s robustness against cross-view style variations that can reflect the specific characteristics of 
different domains whilst maximizing the learning of a globally generalizable (invariant) representation. To this 
end, we propose utilizing cross-domain consensus to learn a domain-agnostic generic prototype. Subsequently, 
this prototype is refined by incorporating cross-domain style variations, thereby achieving cross-view feature 
augmentation. Additionally, we further enhance the discriminative power of the augmented representation by 
formulating an identity attribute constraint to impose attention on the importance of individual attributes, while 
maintaining overall consistency across all pedestrians. Extensive experiments validate that the proposed CDVM 
model outperforms existing state-of-the-art methods by significant margins.

1.  Introduction

Person Re-identification (ReID) aims to retrieve a specific identity 
across disjoint camera views. Over the last decade, this field has gar-
nered significant attention due to its wide-ranging practical applica-
tions [1]. Advances in Convolution Neural Networks (CNNs) have no-
tably contributed to enhancing ReID performance, particularly when the 
training and test data are drawn from the same distribution [2]. How-
ever, despite these advancements, a well-trained ReID model can suf-
fer significant degradation when applied to unseen target domains, pri-
marily due to out-of-distribution (OOD) samples resulting from domain 
shift [3].

Generalizable ReID [4] aims to address the problem when test 
data distribution may be different from that of the training data. 
This scenario poses inherent challenges due to the absence of prior 
knowledge about the unseen test data from target domains, therefore
prohibiting distribution alignment during training. Most existing gen-
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eralizable models are typically designed for a classification task, rather 
than a ReID task, assuming a universal and homogeneous environment 
with a joint label space shared between the source (seen) training do-
main and target (unseen) test domains. In contrast, person ReID is a 
retrieval task with completely disjoint label spaces in both training and 
testing. Hence, the direct application of existing domain generalizable 
models to person ReID is sub-optimal. Recent efforts in the domain 
of generalizable ReID primarily focus on learning a domain-invariant 
representation by removing domain-specific information during model 
training. This is typically achieved by designing a disentanglement
module to factorize domain-invariant and domain-specific components 
from an identity representation [4]. Alternatively, one assumes that the 
domain gap is mainly caused by style (appearance) variations [5] which 
can be mitigated with batch or/and instance normalization [6]. Both 
of these approaches reduce domain-specific characteristics and enable 
the learned representations to be less domain-biased. However, they are 
inherently vulnerable in unseen target domain tests for two reasons. 
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Fig. 1. Comparison of disentanglement learning-based models and the proposed CDVM model. (a). Disentangled representation learning-based methods solely utilize 
domain-invariant knowledge, making them less robust to cross-view appearance variations unique to different target domains. (b). CDVM explores cross-domain 
variations to mimic the style discrepancy of an identity captured by different cameras. A model trained with cross-view augmented features further improves model 
robustness against domain shift in unseen target domains.

Firstly, they inevitably diminish contextual information and sacrifice 
the discrimination of the identity representation [7]. Secondly, models 
trained without accounting for cross-view style variations lack the ro-
bustness to extract a generic domain-invariant representation owning 
to subtle distribution shifts in the test environment [2]. To construct 
a model with the capacity to learn representations that are simulta-
neously context-aware discriminative and domain-agnostic generic, a 
straightforward solution is to collect more cross-camera pairwise sam-
ples for each identity, and from more people. However, this is not only 
too expensive to be realistic but also intrinsically prohibitive due to 
privacy concerns. Another solution is to increase training data by aug-
mentation, such as random perturbation [8] or adversarial diversifica-
tion [9]. However, current data augmentation methods lack the assur-
ance of diversified per-identity cross-camera style variations, and may 
lead to the deterioration of pedestrian-specific information following
augmentation.

In this work, we introduce a new Cross-Domain Variations Min-
ing (CDVM) model to overcome these limitations. The central con-
cept behind the CDVM approach is to enhance the diversity of
per-identity instances through the introduction of cross-view style vari-
ations across different domains. The comparison of the CDVM model 
to conventional disentanglement learning-based models is illustrated in 
Fig. 1. The objective is to expand the cross-view style inherent to individ-
ual identity to learn a generalizable ReID representation that is more ro-
bust under the presence of such cross-view style variations. Specifically, 
we first learn a domain-agnostic (generalizable) identity prototype by ex-
ploiting the consensus of identities regardless of their specific domain 
annotations. Secondly, we enhance the model’s robustness by mitigating 
the covariance stemming from cross-view style variations. This involves 
augmenting the prototype with cross-domain variations through multi-
view augmentation, to simulate the style discrepancy for one identity 
between query and gallery views. Thirdly, we highlight person-specific 
attributes to increase the feature discrimination while maintaining the 
overall consistency across all pedestrians. Our contributions are:

• To our best knowledge, our method pioneers the use of cross-domain 
variations to implicitly explore per-identity multi-view augmenta-
tion, so to encourage model learning to maximize invariant repre-
sentations subject to cross-camera identity retrieval.

• We formulate a principled mechanism CDVM to learn a context-
aware generalizable ReID model sensitive to cross-camera person-
wise variations, optimizing jointly two competing criteria of gener-
alizability and specificity.

• The proposed new model outperforms existing state-of-the-art meth-
ods by a large margin on a wide range of benchmarks.

The rest of the paper is structured as follows: Section 2 presents 
the related work. Section 3 illustrates the proposed method in detail.

Section 4 analyses the experimental results. The paper is concluded in 
Section 5.

2.  Related works

Generalizable Person ReID. Despite the great progress made over re-
cent years, most existing ReID methods [10] are built upon the fragile 
i.i.d assumption and their performance degrades significantly when de-
ployed on a new test domain due to the covariant shift. To solve this 
problem, Generalizable ReID, has garnered increasing attention in re-
cent years as a potential solution. Existing methods are generally cate-
gorized into three groups. The first line of these methods [3,4] revolves 
around utilizing feature disentanglement to explore explanatory and in-
dependent factors by decoupling domain-invariant components from an 
identity representation. Notably, feature normalization techniques, such 
as instance normalization (IN) have been extensively researched to mini-
mize style discrepancy among the normalized representations [6]. How-
ever, while these methods can explicitly reduce domain-invariant com-
ponents, they inevitably diminish the discriminative capability of the 
acquired representations due to limited information being retained in 
the disentangled feature. Furthermore, Meta-Learning which mimics the 
training-testing discrepancy has been widely studied to enable the ex-
tracted features to be domain-agnostic [11]. On the other hand, ensem-
ble learning-based techniques often aggregate descriptors derived from 
by multiple experts to assemble a more resilient representation [12]. 
Despite their efficacy, demonstrated effectiveness, these two strategies 
have limitations in effectively managing cross-domain conflicts and ex-
ploring cross-domain correlations. In this paper, we formulate a new 
generalizable ReID model termed CDVM pioneering the incorporation 
of cross-domain variations to simulate the style shifts for one identity 
captured by disjoint cameras. This innovation is intended to enhance the 
model’s robustness against domain-shifts and to extract discriminative 
representations.

Disentangled Representation Learning. The objective of disentangle-
ment learning [13] is to explore the distinct and explanatory compo-
nents, decoupling a representation into domain-invariant and domain-
specific parts. It is generally achieved through adversarial training [14] 
where the aim is to deceive a domain discriminator, to enable the 
learned features to be domain-agnostic. Alternatively, VAE [15] can be 
employed to model a normal distribution and create a shared space, 
thus aligning the learned features. Disentanglement has also been stud-
ied for the generalization of person ReID. For instance, EOM [3] de-
signed a disentanglement module incorporating a cycle-consistency con-
straint, while Zhang [4] et al. constructed a structural causal model to 
approximate the shifted distribution and pursue the causality between 
identity-specific factors and identity labels. However, it remains uncer-
tain whether the disentanglement criteria and the model is susceptible to 
learning less discriminative representations when a significant domain 
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shift occurs [16]. In this paper, we design a disentanglement module 
constrained by maximizing the consensus of domain-shared knowledge 
so as to learn an identity prototype that is domain-agnostic.

Data Augmentation. Training a neural network with diverse data can 
improve its generalizability on new, unseen domains [17] thereby im-
proving its robustness against spurious correlations. Data augmenta-
tion [18] serves as a cost-effective method to enrich data diversity. Tra-
ditional data augmentations were most commonly applied within the 
raw image space, often through geometric transformations or random 
erasing. The emergence GANs [19] has enmabled the generation of new, 
realistic augmented counterparts featuring different contents or styles. 
More recent studies [20] have explored semantic transformations by di-
rectly manipulating the feature descriptor. For instance, Li et al. [8] 
proved training with features perturbed by Gaussian noise can facilitate 
the creation of a robust decision boundary. In a separate study, Li et al. 
[20] manipulated feature distribution by modeling the uncertainty of 
samples within a minibatch. Huang et al. [21] proposed learning ben-
eficial noise as a form of graph augmentation, where the noise is ex-
plicitly optimized to improve generalization. Zhang et al. [22] framed 
data augmentation as a process of estimating positive-incentive noise 
for contrastive learning. In this paper, we model the cross-domain style 
variations and employ them to augment the identity prototype, provid-
ing diverse pedestrian styles to achieve per-identity multi-view augmen-
tation. By simulating the identity cross-view discrepancy, the trained 
model is robust in extracting domain-unbiased representations during
testing.

Batch/Instance Normalization. Batch Normalization (BN) [23] has 
been widely adopted by contemporary deep models, normalizing inter-
mediate features using statistics computed over the samples in the mini-
batch. Instance Normalization (IN) [24] is a variant aimed at reducing 
style variation by holistically shifting per-instance activation moments. 
IN [6] in conjunction with BN [7] have also found adoption in ReID 
to eliminate style information associated with identity. However, con-
sidering that a specific identity captured by disjoint cameras showcases 
distinct styles [12], a model trained solely with normalized features is 
limited in extracting a discriminative representation against such style 
variations. Additionally, IN might dilute essential complementary in-
formation that is crucial for general visual recognition. In this paper, 
we capture the distinct domain-specific variations by computing the 
statistical moments and utilize them diversify the style of a singular 
identity. This approach aims to achieve per-identity multi-view (style)
augmentation.

3.  Methodology

Problem Definition. In generalizable person ReID, the goal is to train a 
model on multiple labeled source domains such that it performs well on 
unseen target domains, without accessing any target data during train-
ing. Let the source domain set be  = {𝐷𝑘}𝐾𝑘=1, where each domain 𝐷𝑘

contains 𝑁𝑘 labeled pedestrian images: 𝐷𝑘 = {(𝑥𝑘𝑖 , 𝑦
𝑘
𝑖 )}

𝑁𝑘
𝑖=1, and 𝑦𝑘𝑖 ∈ 𝑘

is the identity label. Each domain has a unique identity label space, i.e., 
 𝑖 ∩  𝑗 = ∅ for 𝑖 ≠ 𝑗. The task is to learn a feature extractor 𝑓𝜃 that maps 
an image 𝑥 to a discriminative feature 𝑓𝜃(𝑥), enabling reliable retrieval 
of pedestrian images across disjoint domains and identities. This setting 
constitutes a heterogeneous zero-shot learning problem due to the com-
plete disjointness between the training and test identities. The challenge 
lies in learning representations that are both discriminative and robust 
to domain shifts caused by variations in camera views, environments, 
and styles. 

3.1.  Overview

The objective of the proposed method is to improve the model’s robust-
ness in learning domain-agnostic representations by considering cross-

domain style variations as prompts, aiming to model the style shift for 
an identity captured by different cameras. This objective is archived pro-
gressively from three aspects, namely: generalizability, robustness, and 
discrimination. Initially, we learn a domain-invariant prototype by fac-
torizing the intermediate features with the global-local encoders. Sub-
sequently, we enhance model’s robustness by exploring expanded cross-
domain variations to simulate the style variations of the same identity 
captured by disjoint cameras. Finally, we implicitly learn the importance 
of identity attributes to improve feature discrimination, highlighting the 
most dominant attributes in identifying a person while maintaining con-
sistency across all pedestrians.

3.2.  Domain-invariant knowledge disentanglement

We define domain-invariant information as identity-discriminative 
features that remain stable across all domains (e.g., body struc-
ture, clothing texture), and are unaffected by environmental
conditions. In contrast, domain-specific information refers to the 
style-related variations-such as illumination, resolution, occlusion, and 
camera viewpoint-that are characteristic of a particular domain. These 
style factors are critical in generalizable ReID, as they can mislead a 
model into learning domain-biased representations. In our model, we 
disentangle these two types of features to retain identity relevance 
while adapting to domain-specific styles. One premise of a generaliz-
able model is the capacity to extract a domain-agnostic representation 
for the pedestrian image captured under arbitrary conditions. We 
fulfil this premise by deriving a global-local correlation module to 
explore the applicable consensus of identities among different domains. 
Specifically, the global-local module consists of numerous parallel 
branches: a global encoder applied for all the domains to learn the 
domain-invariant representation, and 𝐾 local encoders specific to each 
domain to model domain-specific knowledge. The global-local encoders 
are designed as a plug-and-play component and incorporated into the 
feature extractor by replacing the final layer in each block. To ensure 
the local and global encoders learn distinct information, we propose 
to maximize the discrepancy of the parameter spaces. Specifically, as 
illustrated in Fig. 2, assuming an intermediate feature 𝐹 𝑘

𝑠 ∈ 𝐵𝑘 ,𝐶,𝐻,𝑊

extracted in the block 𝑠 for the minibatch of samples 𝑘 from domain 
𝐷𝑘, it is fed into simultaneously two branches to disentangle the 
domain-invariant and domain-specific knowledge as
𝐹 𝑘
inv,𝑠 = 𝑓(𝑔,𝑠)

(

𝐹 𝑘
𝑠
)

, 𝐹 𝑘
spe,𝑠 = 𝑓𝑘

(𝑙,𝑠)
(

𝐹 𝑘
𝑠
)

, (1)

where 𝑓(𝑔,𝑠) and 𝑓𝑘
(𝑙,𝑠) are the functionalities corresponding to the global 

and local branches at 𝑠th block. The global and local branches are in the 
same structure with different parameter initialization. The global-local 
encoders are trained with the following constraints: (1) To disentangle 
the intermediate representation, they are constrained to learn distinct 
information by maximizing their discrepancy as

ws =
1

𝐾𝑆

𝐾
∑

𝑘=1

𝑆
∑

𝑠=1
cosine

(

𝜃(𝑔,𝑠), 𝜃
𝑘
(𝑙,𝑠)

)

, (2)

where 𝜃(𝑔,𝑠) and 𝜃𝑘(𝑙,𝑠) are the learnable parameters respectively for 𝑓(𝑔,𝑠)
and 𝑓𝑘

(𝑙,𝑠). (2) To ensure the disentangled output from the global branch is 
domain-agnostic, we adopt adversarial training with a domain discrim-
inator to maximize the likelihood of domain label from the latent rep-
resentation 𝐹 𝑘

inv, s, while 𝑓(g,s) aims to learn domain-invariant feature to 
fool the discriminator. To ensure training stability, we adopt the gradi-
ent reversal layer (GRL) [14], which integrates adversarial optimization 
into the forward-backward pass without requiring alternating updates. 
This, combined with a warm-up strategy and cosine learning rate sched-
ule, helps avoid training divergence and facilitates smooth convergence. 
This is performed by solving the following min-max game:

inv = − 1
𝑆

𝑆
∑

𝑠=1
min
𝜃𝐷(𝑐,𝑠)

max
𝜃(𝑔,𝑠)

𝑘 log𝐷(𝑐,𝑠)

(

𝑓(𝑔,𝑠)
(

𝐹 𝑘
inv,𝑠

))

, (3)
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Fig. 2. Overview of the proposed Cross-Domain Variations Mining (CDVM) model. The overall objective is to enhance the model’s robustness against domain shift 
when applied to an unseen environment. This is achieved by disentangling domain-invariant features, which encode identity-related characteristics consistent across 
domains, and domain-specific features, which primarily capture style-related variations such as illumination, resolution, and camera viewpoints. The model then 
applies cross-domain variations to simulate identity-level style discrepancy for robust multi-view feature augmentation. 

where 𝐷(𝑐,𝑠) is the domain classifier parameterized by 𝜃𝐷(𝑐,𝑠)
. This is re-

alized by applying a gradient reverse layer (GRL) [14] on the domain-
invariant knowledge to fool the domain classifier. (3) To ensure the dis-
entangled output from the local branch is domain-specific, we maximize 
the probability predictions of domain label from 𝐹 𝑘

spe,𝑠 by optimizing the 
following objective:

spe = − 1
𝑆

𝑆
∑

𝑠=1
𝑘 log𝐷(𝑐,𝑠)

(

𝑓𝑘
(𝑙,𝑠)

(

𝐹 𝑘
spe,𝑠

))

, (4)

The final disentanglement objective is formulated as
dise = ws + inv + spe. (5)

3.3.  Cross-domain multi-view augmentation

The global encoder is specifically designed to extract a disentangled 
domain-agnostic prototype 𝐹 𝑘

inv,s , as defined by Eq. (1). However, con-
sidering the potential for significant style shifts in testing samples, due 
to occlusion, scale variations, and illumination changes, the prototype 
might exhibit limited robustness and discrimination, thereby restricting 
its ability to effectively represent a single identity in this case. Normal-
ization techniques, e.g., BN and IN, have been widely employed in recent 
generalizable ReID models to mitigate per-identity style disparities. Nev-
ertheless, we contend that such approaches overlook the diverse style 
variations offered by samples from other domains which could be bene-
ficial in learning a more robust model. Instead, we perform per-identity 
multi-view style augmentation using cross-domain normalization statis-
tics. This is equivalent to introducing additional instances for one iden-
tity but in different styles mimicking the style variations present in query 
and gallery views.

Specifically, given the domain-specific knowledge 𝐹 𝑘
inv,s, we derive 

the per-domain style characteristic by pooling the instance normaliza-
tion statistics [6] over the current minibatch as:

𝜇𝑘
𝑠 = 1

𝐵𝑘𝐻𝑊

𝐵𝑘
∑

𝑏=1

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1
𝐹 𝑘
𝑠 (𝑏, ℎ,𝑤),

(𝜎𝑘𝑠 )
2 = 1

𝐵𝑘𝐻𝑊

𝐵𝑘
∑

𝑏=1

𝐻
∑

ℎ=1

𝑊
∑

𝑤=1

(

𝐹 𝑘
𝑠 (𝑏, ℎ,𝑤) − 𝜇𝑘

𝑠
)2,

(6)

where 𝐵𝑘 represents the number of samples in a mini-batch drawn from 
domain 𝐷𝑘. The statistical moments 𝜇𝑘

𝑠  and (𝜎𝑘𝑠 )2 encode the character-
istics of domain 𝐷𝑘. These statistics are modeled in a mini-batch level 
rather than instance-level, to offset the potential disruptions caused by 

outliers, e.g., an image without a person. Instead of treating each of them 
as a determined point, to consider the randomness of the combinations, 
we further build a Gaussian distribution  (𝜇𝑘

𝑠 , 𝜎𝑘𝑠
2
) with the 𝜇𝑘

𝑠  to indi-
cate the expansion direction and 𝜎𝑘𝑠  for the intensity as

𝜇𝑘
𝑠 = 1

𝐾 − 1

𝐾
∑

𝑖=1,𝑖≠𝑘
𝜇𝑘
𝑠 + 𝜖𝜇𝛿

(

𝜇𝑘
𝑠
)

,

𝜎𝑘𝑠 = 1
𝐾 − 1

𝐾
∑

𝑖=1,𝑖≠𝑘
𝜎𝑘𝑠 + 𝜖𝜎𝛿

(

𝜎𝑘𝑠
)

.

(7)

where 𝜖𝜇 and 𝜖𝜎 are sampled from the normal distribution to vary the ex-
pansion direction and intensity. Moreover, 𝛿(⋅) calculates the variance 
to measure the diversity of the cross-domain statistics. The expanded 
cross-domain statistics 𝜇𝑘

𝑠  and 𝜎𝑘𝑠  encodes diverse style information sam-
pled over disjoint domains. Therefore, the style information in 𝐹 𝑘

spe, s is 
modified by substituting the feature statistics as

𝐹 𝑘
sty,s = 𝜎̂𝑘𝑠

𝐹 𝑘
spe, s − 𝜇𝑘

𝑠

𝜎𝑘𝑠
+ 𝜇̂𝑘

𝑠 . (8)

Subsequently, the modified style information is fused with invariant 
ID knowledge through a fully-connected (FC) layer as

𝐹 𝑘
𝑠 = FC

(

cat
(

𝐹 𝑘
inv,𝑠, 𝐹

𝑘
sty,s

))

, (9)

where cat(⋅) is the concatenation operator functions on the channel di-
mension, and FC(⋅) represents the FC layers which reduces the channel 
dimension of the concatenated representation from 2𝐶 to 𝐶. Therefore, 
the identity representation is expanded in various directions to achieve 
multi-view augmentation.

3.4.  Subspace hierarchical and consistent constrain

Feature maps extracted at each block with different kernels focusing 
on various aspects of the input image. Given the augmented represen-
tation 𝐹 𝑘

𝑠 , we group it into subspaces, with the assumption that each 
group corresponds to specific characteristics essential for representing 
an identity. Intuitively, certain attributes, such as facial appearance and 
body structure, play a more dominant role in identifying a person com-
pared to others. By emphasizing these influential characteristics, we aim 
to enhance the discriminative power of the learned representation. To 
this end, we introduce a subspace constraint that considers two critical 
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aspects: (1) Per-identity local hierarchy: For one identity, the signifi-
cance of characteristics should be weighted differently so as to empha-
size different aspects of the feature that contribute to identity identifi-
cation. (2) Cross-domain global consistent: Considering the universally 
applicable explanatory of pedestrians regardless of the domain anno-
tation, the dominant characteristics in one domain should retain their 
importance when considering any other domain. We implicitly realize 
this constrain by slicing the augmented representations into subspaces 
(groups) along the channel dimension, and feeding them into a hyper-
network to estimate the significance of each group with a set of predic-
tions  = {𝑤𝑣}𝑉𝑣=1, where 𝑉  is the number of subspaces. This constrain 
is mathematically formulated as 

v =
1

𝑉 (𝑉 − 1)

𝑉
∑

𝑚=1

𝑉
∑

𝑛=1
𝑛≠𝑚

[

𝑚1 − ‖𝑤𝑚 −𝑤𝑛‖2
]2
+,

c =
1

𝐵(𝐵 − 1)

𝐵
∑

𝑖=1

𝐵
∑

𝑗=1
𝑗≠𝑖

[

‖𝑖 −𝑗‖2 − 𝑚2
]2
+,

(10)

where 𝐵 is the number of samples in a minibatch, and 𝑖 is the impor-
tance prediction for the pedestrian 𝑖. The two hyperparameters 𝑚1 and 
𝑚2 are the margins. The final characteristic constraint is the combined 
as

attr = c + v. (11)

3.5.  Model training

Training Objectives. The proposed CDVM is jointly trained with vari-
ous objectives, including the conventional cross-entropy loss ce, triplet 
loss tri, center loss cent, the feature disentanglement loss dise, and 
the proposed attribute constraint attr.
 = ce + tri + cent + 𝛼dise + 𝛽attr, (12)

where 𝛼 and 𝛽 are the hyperparameters to balance the importance of 
the corresponding learning objective.
Training Pipeline. To improve the generalizability of the proposed 
model, we adopt the meta-learning algorithm as the training strategy 
to simulate the training-testing discrepancy. Given 𝐾 source domains 
available during training, samples in 𝐾 − 1 domains are used as the 
meta-training set and the remaining domain is used as a meta-testing 
set. The parameters of the entire network are updated by the second-
order gradient with respect to the meta-test loss. The overall training 
procedure is depicted in Algorithm 1.

4.  Experiments

Datasets and protocols. We conducted multisource domain general-
ization on a wide range of 9 benchmarks, including five large-scale 
datasets: Market1501 (M) [25], MSMT17 (MT) [26], CUHK02 (C2) [27], 
CUHK03 (C3) [28], CUHK-SYSU (CS) [29], and four small-scale datasets: 
PRID [30], GRID [31], VIPer [32], and iLIDs [33]. For CUHK03, we used 

Algorithm 1 Learning of the proposed CDVM model.
Input: Source domains 𝐷𝑘 = {(𝑥𝑘𝑖 , 𝑦

𝑘
𝑖 )}

𝑁𝑘
𝑖=1; Maximum iterations 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟; 

Number of training block 𝑆.
Output: Trained 𝑓𝜃 .
for 𝑖 = 1 to 𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
 Randomly sample a mini-batch {(𝑥𝑖, 𝑦(𝑝)𝑖 )}.
 for 𝑠 = 1 to 𝑆 do
 Intermediate feature 𝐹 𝑘

(𝑖,𝑠) Extraction.
 Feature disentanglement by Eq. (5).
 Cross-domain augmentation by Eq. (8).
 Attribute significance modeling by Eq. (11).

 Global pooling to get identity representation.
 Compute the meta losses (Eq. (12)).
 Update parameters by gradient descent.
end for 

Table 1 
Statistics of ReID datasets used in the paper.
 Datasets  Abbr.  ID  Img
 Market1501 [25]  M  1501  29,419
 MSMT17 [26]  MS  4101  126,441
 CUHK02 [27]  C2  1816  7264
 CUHK03 [28]  C3  1467  14,097
 CUHK-SYSU [35]  CS  11,934  34,574

 Probe  Gallery
Datasets  ID  Img  ID  Img
 PRID [30]  100  100  649  649
 GRID [31]  125  125  900  900
 VIPeR [32]  316  316  316  316
 iLIDS [33]  60  60  60  60

the “labeled” subset to keep a fair comparison with the SOTA competi-
tors [12,34]. The statistics of these datasets are shown in Table 1, and a 
few samples are visualized in Fig. 3, which exhibits significant domain 
shift caused by variations on illumination, viewpoint, resolution, and 
scene context.
Evaluation Metrics. We adopt two widely used evaluation metrics for 
person ReID:
(1) Cumulative Matching Characteristic (CMC) Rank-1 Accuracy, which 
measures the probability that the top-ranked gallery image corresponds 
to the correct identity. Let 𝟙(𝑟𝑖 = 1) be an indicator function that equals 
1 if the 𝑖th query’s correct match appears in the top-1 retrieval result; 
then the Rank-1 accuracy is:

Rank-1 = 1
𝑁

𝑁
∑

𝑖=1
𝟙(𝑟𝑖 = 1), (13)

where 𝑁 is the number of queries.
(2) Mean Average Precision (mAP), which reflects both precision and re-
call across the ranking list. For each query 𝑞𝑖, the average precision (AP) 

Fig. 3. Example identity samples from different domains. Significant domain gaps are caused by the variation on nationality, illumination, viewpoints, resolution, 
scenario, etc.
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Table 2 
Comparisons with the SOTA methods under protocol-1. The best results are in bold. 

Source Method
→PRID →GRID →VIReR →iLIDs  Average
 mAP  R1  mAP  R1  mAP  R1  mAP  R1  mAP  R1

D+M+C2+C3+CS

 DIMN [36]  52.0  39.2  41.1  29.3  60.1  51.2  78.4  70.2  57.9  47.5
 SNR [6]  66.5  52.1  47.7  40.2  61.3  52.9  89.9  84.1  66.4  57.3
 RaMoE [37]  67.3  57.7  54.2  46.8  64.6  56.6  90.2  85.0  69.1  61.5
 DMG-Net [11]  68.4  60.6  56.6  51.0  60.4  53.9  83.9  79.3  67.3  61.2

Protocol-1: M+C2+ C3+CS

 QAConv50 [38]  62.2  52.3  57.4  48.6  66.3  57.0  81.9  75.0  67.0  58.2
 M3L [34]  65.3  55.0  50.2  40.0  68.2  60.8  74.3  65.0  64.5  55.2
 MetaBIN [7]  70.8  61.2  57.9  50.2  64.3  55.9  82.7  74.7  68.9  60.5
 META [12]  71.7  61.9  60.1  52.4  68.4  61.5  83.5  79.2  70.9  63.8
 CDVM (Ours)  74.1  64.8  66.1  56.0  69.6  63.6  87.7  83.1  74.4  66.9

is:

AP𝑖 =
1
𝑚𝑖

𝑛
∑

𝑘=1
𝑃𝑖(𝑘) ⋅ rel𝑖(𝑘), (14)

where 𝑃𝑖(𝑘) is the precision at the 𝑘th rank, rel𝑖(𝑘) is a binary indicator 
of relevance at rank 𝑘, 𝑚𝑖 is the total number of relevant images for 𝑞𝑖, 
and 𝑛 is the list length.

The overall mAP is the average of APs across all queries:

mAP = 1
𝑁

𝑁
∑

𝑖=1
AP𝑖. (15)

Implementation details. Following the conventional settings [39], we 
used ResNet50 [40] with IBN [41] pre-trained on ImageNet to bootstrap 
the feature extractor. The batch size for each domain was set to 64, in-
cluding 32 randomly sampled identities and 2 images for each identity. 
All images were resized to 256 × 128. We augmented the training data by 
random erase, flipping, and colorjitter. The proposed CDVM was trained 
for 120 epochs with an SGD optimizer [42], and the warm-up strategy 
was adopted in the first 10 epochs to stabilize model training. The learn-
ing rate was initialized as 0.01 and decay to 5𝑒 − 5 by Cosine Annealing. 
The balancing factors 𝜆 and 𝛽 in Eq. (12) were both set to 0.5. The mar-
gins 𝑚1 and 𝑚2 in Eq. (11) were set to 0.1. The dimension of the ID 
representation is conventionally set to 2048. All the experiments were 
conducted on the PyTorch framework with four A100 GPUs.

4.1.  Comparisons to the state-of-the-art

Comparison under Protocol-1. One established evaluation protocol 
[6,36,37], is to train on five large-scale datasets, i.e., DukeMTMC [43], 
Market1501, CUHK02, CUHK03, and CUHK-SYSU and test on four 

small-scale datasets, i.e., PRID, GRID, VIPeR, and iLIDs. However, due to 
the widely used DukeMTMC dataset was officially taken off due to pri-
vacy issues, recent works [12,39] proposed a new protocol by removing 
DukeMTMC and using the remaining four datasets (M+C2+C3+CS) 
for training, called Protocol-1. Under this protocol, all the samples, re-
gardless of the original training/testing splits, are used for training. We 
made a fair comparison with the SOTA competitors by performing 10-
trial evaluations [6,36] on the random split query/gallery sets, and re-
ported the averaged results in Table 2. Compared to the other SOTA 
models trained with the same datasets, our model shows clear advan-
tages and outperforms the latest SOTA model META [12] by 5.5% in 
mAP and 5.0% in Rank1 scores. Compared with the other SOTA meth-
ods trained including the DukeMTMC dataset, our method remains com-
petitive.

Comparison under protocol-2 and protocol-3. The proposed CDVM 
model was further evaluated on four large-scale datasets with a leave-
one-out strategy, i.e., using three domains for training and the left one 
for testing. Note that due to all the identities in CUHK-SYSU are captured 
by the same camera, it was only used for training. For protocol-2, only 
the train splits of these datasets were leveraged for training. In contrast, 
for protocol-3, all the available labeled samples, regardless of the orig-
inal splits, were used in training. We reported the comparison results 
in Table 3. It can be observed that the proposed CDVM model achieve 
superior performance when generalizing to CUHK03 and Market1501 
and remains competitive when MSMT17 was leveraged as the target do-
main. This illustrates that the CDVM model can benefit more when more 
identities are available to provide abundant style variations in training. 
We note that the combination “M+CS+C3→MS” does not yield the best 
performance. This is mainly due to the significant domain gap: MSMT17 
contains more diverse scenes and lighting conditions than the relatively 

Table 3 
Comparisons with the SOTA generalizable person ReID models on large-scale datasets (protocol-2 and protocol-3). 

Setting Method
 M+MS+CS→C3  M+CS+C3→MS  M+CS+C3→M  Average
 mAP  R1  mAP  R1  mAP  R1  mAP  R1

Protocol-2: Training Sets

 SNR [6]  8.9  8.9  6.8  19.9  34.6  62.7  16.8  30.5
 QAConv50 [38]  25.4  24.8  16.4  45.3  63.1  83.7  35.0  51.3
 MetaBIN [7]  28.8  28.1  17.8  40.2  57.9  80.1  34.8  49.5
 M3L [34]  34.2  34.4  16.7  37.5  61.5  82.3  37.5  51.4
 ACL [39]  41.2  41.8  20.4  45.9  74.3  89.3  45.3  59.0
 META [12]  36.3  35.1  22.5  49.9  67.5  86.1  42.1  57.0
 CDVM (Ours)  41.7  42.8  20.7  46.4  74.8  89.8  45.4  59.7

Protocol-3: Full Sets

 SNR [6]  17.5  17.1  7.7  22.0  52.4  77.8  25.9  39.0
 QAConv50 [38]  32.9  33.3  17.6  46.6  66.5  85.0  39.0  55.0
 MetaBIN [7]  43.0  43.1  18.8  41.2  67.2  84.5  43.0  56.3
 M3L [34]  35.7  36.5  17.4  38.6  62.4  82.7  38.5  52.6
 ACL [39]  49.4  50.1  21.7  47.3  76.8  90.6  49.3  62.7
 META [12]  47.1  46.2  24.4  52.1  76.5  90.5  49.3  62.9
 CDVM (Ours)  50.9  50.7  22.6  50.1  77.6  90.8  50.4  63.9

Pattern Recognition 171 (2026) 112292 

6 



Q. Li et al.

Table 4 
Components analysis. The proposed components were progressively in-
corporated into the baseline to study the individual contribution. The 
best results are in bold.
 Components  CUHK03  MSMT17  Market1501
dent 𝑓aug attr  mAP  R1  mAP  R1  mAP  R1
 7  7  7  33.9  34.2  17.5  43.1  69.5  87.2
 3  7  7  36.6  37.1  18.1  44.3  71.6  88.2
 7  3  7  39.1  39.3  18.9  45.1  73.1  88.5
 7  7  3  37.6  37.1  18.2  44.2  71.5  88.1
 3  3  3  41.7  42.8  20.7  46.6  74.8  89.8

homogeneous settings in Market1501, CUHK03, and CUHK-SYSU. As a 
result, the training domains offer limited style variation to effectively 
simulate the complexity of MSMT17. 

4.2.  Ablation study

We conducted comprehensive ablations studies to provide in-depth anal-
yses and better understanding of each designed components of the 
CDVM model. All the variants were evaluated under protocol-2.
Components analysis. We investigated the individual contribution of 
different components in the CDVM model to study its effectiveness. As 
shown in Table 4, the performance was progressively improved by in-
corporating the proposed constraints. Specifically, introducing the dis-
entanglement loss dent can reduce the domain gap compared with the 
baseline model. Further performing cross-domain style augmentation 
improved the model’s robustness against the potential style variations 
and so to make the representations more robust to cross-camera view 
variations in specificity. Finally, employing the attribute constraint fur-
ther improved the discrimination capacity of the learned representation.
Global-Local Discripency Constraint. One premise for decoupling the 
domain-invariant and domain-specific knowledge from the learned rep-
resentation is that the global and local branches are learning distinctive 
information. To achieve this goal, we designed the constraint ws to 
explicitly enlarge the discrepancy of the learnable parameters between 
the global and local encoders. We ablated its effectiveness in knowl-
edge disentanglement. The comparison result is shown in Table 5. By 
employing the discrepancy constraint ws, the performance is consis-
tently improved on all the benchmarks. This shows the inadequacy of 
the conventional disentanglement design and the potential advantages 
of optimizing jointly both the generalizability and specificity criteria by 
this discrepancy constraint.
Cross-Domain Variation Expansion. To encourage the model to 
be robust against style variation, we performed cross-domain multi-
view feature augmentation by sampling the style factors over the 
cross-domain statistics. We considered the randomness and combi-
nations of the cross-domain activations, to achieve a more diverse 
augmentation, which is termed as “elastic” expansion. We validated 

Table 5 
Effectiveness of the proposed discrepancy constraint ws in fea-
ture disentanglement.

 CUHK03  MSMT17  Market1501
Components  mAP  R1  mAP  R1  mAP  R1
 w/o ws  35.1  35.8  17.8  43.6  70.1  87.1
 w ws  36.6  37.1  18.1  44.3  71.6  88.2

Table 6 
Effects of different strategies in exploring cross-domain varia-
tions. “Determined” takes variations as fixed factors, “Elastic” 
considers combinations and randomness. 

 CUHK03  MSMT17  Market1501
Method  mAP  R1  mAP  R1  mAP  R1
 Determined  37.3  38.1  19.0  45.1  72.0  88.3
 Elastic  40.9  41.6  19.5  45.7  73.4  88.9

the superiority of this augmentation strategy over the vanilla coun-
terpart, i.e., treat the statistics as determined factors without any 
expansion, and the results are reported in Table 6. We observed 
that (1) Considering the cross-domain variations improves the perfor-
mance compared with the baselines, which verifies our assumption 
that enhance the diversity of identity is beneficial for learning a ro-
bust and generalization model. (2) Compared with taking the cross-
domain variations as determined factors, exploiting the elastic ex-
pansion with random direction and intensity can yield better results. 
This validates the superiority of the proposed cross-domain expansion
strategy.

Effects to Number of Subspaces. We studied the effects of the number 
of subspaces on the attribute constraints (Eq. (11)). Fig. 4a shows that 
grouping features into more subspaces provides a positive impact on 
model generalization. However, further increasing the number of sub-
spaces can bring an optimization issue due to laking of explicit supervi-
sion signal. Based on the analysis, we set the number of subspaces to 4 
as the default in our model design.

4.3.  Visualization

To further validate the effectiveness of the proposed model, we con-
ducted t-SNE visualization on the representations extracted by differ-
ent models. The target domain was MSMT17 and the other three do-
mains were leveraged for training. We sampled 1000 instances in each 
domain. Results are shown in Fig. 4b. From it, we observed that the 
baseline model is prone to learn domain-bias representations while the 
proposed CDVM model is more robust in extracting domain-invariant 
representation. Additionally, we visualized the attention maps gener-
ated by both the ResNet50 baseline and the proposed CDVM model. The 
results in Fig. 5 demonstrate that CDVM is more attentative to the target
object. 

Fig. 4. (a) Increasing subspace granularity improves generalization but may lead to optimization challenges. (b) t-SNE shows that our model better extracts domain-
invariant features compared to the baseline.
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Fig. 5. Visualization of person image and attention map extracted by ResNet50 (baseline) and the proposed CDVM model.

5.  Conclusions

In this work, we presented a novel Cross-Domain Variations Mining
(CDVM) model to learn a generalizable ReID representation that simul-
taneously optimizes model generalizability and specificity. The moti-
vation of CDVM model design is that the cross-domain variations can 
be used to perform multi-view augmentation on one identity, so as to 
simulate the style variations between the query and gallery views. To 
achieve this goal, we first explored cross-domain consensus to learn a 
domain-agnostic prototype which is then optimized with cross-domain 
variations for implicitly multi-view feature augmentation. Moreover, we 
further boosted the discrimination of the augmented representation by 
formulating an identity attribute constraint to reassemble the represen-
tation considering individual attribute significance. We validated the 
effectiveness of the proposed CDVM model extensively on 9 benchmark 
datasets. We show that the proposed new model outperforms existing 
SOTA methods by a notable margin.
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