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Abstract. Federated learning (FL) is crucial for ensuring data pri-
vacy, a major concern in many applications. However, FL faces sig-
nificant challenges due to data and model heterogeneity arising from
diverse learning environments and the varying capabilities of par-
ticipating entities. Most existing methods primarily concentrate on
aggregating knowledge that is represented by models, logits, or fea-
tures. which rely on specific assumptions that may not hold in real-
world scenarios and thus fail to address both data and model het-
erogeneity simultaneously. In this work, we aim to address these
challenges by tackling heterogeneity from both model and data per-
spectives while maintaining efficiency. To this end, we leverage lo-
cally encoded latent prototypes produced from the local knowledge
memory bank to represent per-client knowledge updates, which are
then aggregated on the server and transferred back to the clients for
knowledge decoding and integration as global constraints for further
local training. Considering the heterogeneity in model architectures,
we design the knowledge encoder and decoder to be compatible with
different model architectures and ensure robust prototype aggrega-
tion by aligning latent spaces to a common prior distribution, to en-
hance compatibility under diverse data distributions. We evaluate our
method on multiple benchmarks and demonstrate its superior perfor-
mance in terms of accuracy and effectiveness under various hetero-
geneous settings.

1 Introduction

Federated learning (FL) [23] has emerged as an important learning
paradigm for collaborative model training while preserving data pri-
vacy. By enabling decentralized learning across clients, FL avoids
sharing raw data, thus addressing critical privacy concerns. However,
real-world FL scenarios are often characterized by substantial hetero-
geneity, such as in both client data distributions and model architec-
tures. Such entangled heterogeneity presents significant challenges
for effective aggregation and robust model performance across di-
verse clients, especially in settings where clients have varying com-
putational capabilities and domain-specific requirements.

Numerous FL methods, such as FedAvg [10], rely on aggregating
client models under the assumption of homogeneous architectures
and Independent and Identically Distributed (IID) data. While this
approach is simple and scalable, it breaks down when applied in sce-
narios where clients deploy heterogeneous model tailored to their
specific needs. In such scenarios, the differences in model structures
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Table 1: Comparison of different types of aggregated knowledge in
FL. MH - Model Heterogeneity, DH - Data Heterogeneity, PP - Pri-
vacy Preservation, CE - Communication Efficiency.

Knowledge Type MH DH PP CE

Model Parameters X X X X
Logits Predictions v X v v
Feature Prototype X v X v
Latent Prototype v v v v

across clients cause FedAvg and other parameter-averaging methods
to be ineffective [3]. Furthermore, the reliance on the IID assumption
fails to address the natural diversity in the real-world, which leads to
suboptimal generalization and performance degradation [22].

In addition to model parameters, knowledge can also be pre-
sented as logits or features for aggregation. We compared differ-
ent knowledge aggregation methods in Tabel 1. Specifically, Logits-
based methods, such as FedDistill [5], address model heterogene-
ity by aggregating predicted logits instead of raw parameters. These
methods bypass the need for architectural alignment and rely on soft-
label information to transfer knowledge across clients. Although ef-
fective in alleviating architectural mismatches, logits carry limited
information due to their low dimensionality, which can only cap-
ture class-level probabilities without semantic richness [11]. Con-
sequently, these methods often struggle to generalize well in com-
plex tasks, where high-dimensional feature representations are es-
sential for robust learning. Feature-based approaches, such as Fed-
Proto [14], represent another line of work where class-level feature
prototypes are aggregated instead of parameters or logits. By aligning
feature spaces across clients, FedProto offers better generalization
under both model and data heterogeneity. However, this approach is
not without drawbacks. The transmission of raw feature embeddings
exposes clients to significant privacy risks, as adversaries can exploit
feature inversion techniques [21] to reconstruct sensitive data. This
trade-off between feature alignment and privacy preservation under-
lines the limitations of existing feature-based methods. In contrast,
our latent prototypes are compact and sampled with Gaussian noise,
making them inherently more resistant to inversion and compliant
with privacy-preserving principles.

The intertwined challenges of both data and model heterogene-
ity exacerbate these limitations. Clients with non-1ID data distribu-
tions introduce further complexity into aggregation, amplifying the
difficulty of aligning feature spaces across diverse models. Exist-
ing methods typically address either model or data heterogeneity but
rarely provide a unified solution capable of handling both challenges
simultaneously.
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Several recent strategies have been proposed to address these in-
tertwined challenges in federated learning (FL). For example, Fed-
PAC [17] adopts a cautious collaboration mechanism to address per-
sonalization and heterogeneity, but it faces difficulties when col-
laboration decisions are overly conservative or when adapting to
highly diverse client scenarios. FedCAC [20] combines feature align-
ment with classifier collaboration, providing strong personalization
capabilities, but it introduces significant computational overhead
when applied to large-scale federated systems. In addition, these ap-
proaches, while addressing certain aspects of heterogeneity, often
rely on assumptions that may not hold in real-world scenarios, such
as precise knowledge of client data distributions or the ability to per-
form effective knowledge distillation across diverse datasets, which
can be impractical in privacy-sensitive and heterogeneous environ-
ments [26]. Other works introduce significant computational or com-
munication overheads, limiting their applicability in real-world FL
deployments [12]. The intertwined challenges of model and data het-
erogeneity remain insufficiently addressed, whether considered sep-
arately or together. It highlights the urgent need for a unified and
efficient solution that can operate under practical constraints.

In this work, we propose a novel federated learning framework
termed as Latent Knowledge Prototypes (FedLKP), to address the in-
tertwined challenges of model and data heterogeneity while ensuring
efficiency, robustness, and privacy preservation. Our approach cen-
tres on the discovery and utilization of compact knowledge represen-
tation encoded from local training samples, encoded from distributed
local clients, to achieve seamless integration of client-specific in-
sights with global learning objectives.

To this end, we introduce, to each client, a knowledge vault as its
secure local repository to store client-specific knowledge and extract
from the value globally aligned latent prototypes that serve as per-
client knowledge updates. These prototypes are aggregated on the
server in a global knowledge consensus manner and then decoded
via a local knowledge decoder to guide further local training. This
enables effective knowledge sharing across heterogeneous clients by
serving as individual client constraints.

1.1 Contributions

By tailoring the knowledge encoder and decoder to meet the di-
mensional requirements respect to the model architectures in each
learning entity, our framework can efficiently address model hetero-
geneity in FL systems. By leveraging transformed latent prototypes,
our framework incorporates global knowledge to prevent overfitting
to local datasets while enhancing privacy by mitigating the risk of
feature inversion. In short, FedLKP provides a robust and scalable
solution that balances the need for personalized local training with
the benefits of globally aligned guidance, achieving superior perfor-
mance in diverse FL scenarios. Our contributions are summerised as
follows:

e We propose Latent Knowledge Prototypes (FedLKP), to address
both model and data heterogeneity in federated learning by lever-
aging locally aligned latent prototypes, that can be aggregated
globally and decoded locally as a constraint for global knowledge
distillation.

o We realize FedLKP with a knowledge encoder that generates la-
tent prototypes from local knowledge vaults and a knowledge
decoder that decodes the global knowledge distributed from the
global server, enabling a privacy-aware local training while also
benefiting from globally aligned prototype guidance.

e We demonstrate that FedLKP provides a robust and efficient solu-
tion that balances the need for personalized local training with the
benefits of globally aligned guidance, showing superior perfor-
mance in terms of accuracy, efficiency, and privacy preservation
under various heterogeneous settings.

2 Related Work

Heterogeneous Federated Learning. Federated Learning (FL) [23]
enables collaborative model training across decentralized data
sources while preserving data privacy. However, real-world FL sys-
tems must contend with heterogeneous client environments charac-
terized by differences in model architectures, computational capac-
ities, and non-IID data distributions. These challenges significantly
hinder the effectiveness of FL methods. Classical approaches like
FedAvg [10] aggregate client-side model parameters and assume 11D
data and homogeneous architectures. While effective in controlled
environments, these assumptions lead to suboptimal performance
in heterogeneous settings. To address this, recent methods explore
client-specific optimizations. For example, FedADKD [26] employs
adaptive knowledge distillation to address data heterogeneity with-
out requiring identical model architectures. Similarly, HFedCWA [2]
uses contribution-weighted aggregation, accounting for data distri-
bution differences and client resource constraints. However, both
approaches rely on idealized assumptions, such as accurately esti-
mating client contributions, which may not hold in practice. Despite
these advancements, FL systems often fail to balance the trade-offs
between efficiency and robustness in highly heterogeneous environ-
ments. This gap highlights the need for unified solutions that simul-
taneously address model and data heterogeneity while maintaining
privacy.

Knowledge Aggregation in FL. Aggregation methods in FL can
be broadly categorized into model-based, feature-based, and logit-
based approaches, each addressing specific aspects of heterogeneity.
Model-Based Aggregation: Classical methods like FedAvg and its
variants aggregate model parameters to achieve consensus. However,
when clients use heterogeneous architectures, such aggregation be-
comes infeasible due to incompatible parameter spaces [10].Recent
methods like FedPAC [17] and FedCAC [20] attempt to address het-
erogeneity by leveraging cautious collaboration and classifier align-
ment, respectively. However, these approaches may struggle with
computational overhead or conservative updates that hinder effec-
tive aggregation in dynamic environments. Feature-Based Aggrega-
tion: FedProto [14] aligns feature spaces by aggregating class-level
feature prototypes, offering better generalization under model and
data heterogeneity. However, transmitting raw feature embeddings
exposes clients to potential privacy risks, as attackers can reconstruct
sensitive data using inversion techniques [4]. Additionally, the re-
sources required to align high-dimensional feature spaces often in-
troduce computational overhead. Logit-Based Aggregation: FedDis-
till [S] combining logit aggregation with augmentation techniques
to improve performance under non-IID conditions but still lack-
ing the semantic richness necessary for diverse applications. While
logits provide a lightweight representation, their low dimensional-
ity limits their ability to capture rich semantic information, which
is essential for robust generalization in complex tasks. In addition,
logit-based FL. methods are prone to privacy leakage once being at-
tacked [19]. Recent advancements, such as FedCAC [20], focus on
leveraging feature alignment and guiding local training in heteroge-
neous environments, which overlooks the privacy issue of features
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Figure 1: Illustration of the proposed Latent Knowledge Prototypes (FedLKP) framework. (a) The overall workflow encompasses local knowl-
edge extraction and uploading, global knowledge aggregation, and downloading. (b) For each client k, the local private data Dy, is utilized for
feature extraction to update the knowledge vault Vj,, which is subsequently encoded into latent prototypes z;, and uploaded to the server. (c)
The server aggregates the latent prototypes from all clients and produces global prototypes z, for each label in a globally consensus-aware
manner, assigning weights based on distance. (d) The global prototypes are then distributed to each client, decoded into local knowledge Vi,

and used as constraints during local training via knowledge distillation.

that are prone to inversion attacks [9]. While these methods demon-
strate improved personalization and generalization, they often rely
on additional assumptions, such as accurate distribution estimation or
computationally expensive alignment mechanisms, which can hinder
their practicality in large-scale FL systems.

Latent Representation in Deep Learning. Latent representations
are fundamental to deep learning models, capturing compressed
and meaningful feature representations. Variational Autoencoders
(VAEs) [7] are widely used for learning such representations. It
can align latent vectors with a normal distribution, which facilitates
model regularization, and improves generalization while reducing
overfitting. Introducing noise into latent vectors has further enhanced
privacy by obfuscating sensitive information, making it an effective
mechanism for privacy-preserving federated learning. In this paper,
we demonstrate that the advantage of latent representations can be
extended to federated learning, in which the latent prototypes can
be used as compact and privacy-preserving knowledge representa-
tions that enable efficient aggregation and knowledge distribution.
By aligning latent spaces across clients, global knowledge can be
integrated while maintaining local customization, mitigating overfit-
ting, and preventing privacy leakage.

3 Method
3.1 Problem Formulation

Federated learning (FL) involves a set of K distributed clients, de-
noted as C = {C1,Cs,...,Ck}. Each client optimizes its local
model M), by using knowledge derived from other clients’ data
while not directly accessing the raw data. Each client Cx owns a
local dataset Dy, = {(zk,j, yk,j)};v:kl, where z,; and ys,; repre-
sent the ;" input and label pair. Due to the decentralized nature of
FL, the data distributions P;(x,y) across clients are often non-IID
and imbalanced, which leads to data heterogeneity. In addition to
data heterogeneity, clients may deploy different local models M
to accommodate their computational or application-specific require-
ments. These variations in architecture, size, and parameter space O

result in model heterogeneity, which poses challenges to traditional
FL methods that rely on parameter aggregation.

3.2  Framework Overview

In this work, we propose Latent Knowledge Prototypes (FedLKP)
framework to address both data and model heterogeneity by lever-
aging latent prototypes as compact and generalizable representations
of client knowledge. Each client maintains a local model M, that
extracts task-relevant knowledge from its local data. The extracted
knowledge is stored in a locally private memory bank, referred to
as the knowledge vault Vi. An encoder QY, parameterized by 6,
processes the knowledge vault to produce latent prototypes. These
prototypes are aligned to a joint distribution, such as Gaussian, to
ensure compatibility for global aggregation. The prototypes are then
transmitted to a central server, where a consensus-aware mechanism
aggregates them into a global prototype. This global prototype, re-
sembling a generalized knowledge of the label space, is distributed
back to the participating clients. Upon receiving the global prototype,
each client uses the decoder P,f , parameterized by ¢, to convert it
into task-specific representations compatible with its local model for
knowledge distillation.

3.3 Local Latent Prototype Generation

Consider a local client Cj, with a local model M, consisting of a
feature extractor Ry, and a task head T, the feature extractor pro-
cesses the local training data Dy, = {(z:,:)} 2% to extract feature
representation h; € R%ex:

h; = Rp(xi), V(xi,v:) € Dy. (D
These feature representations are organized into label-specific
knowledge slots to formulate a knowledge vault V;, which is a code-
book about the local data for each class. Each knowledge slot V;,
stores the representations corresponding to class <. It is defined as:

Vi=1{h;|y; =i}, i€, )



where )i denotes the set of labels present in the local dataset Dy,.
The knowledge vault Vi, has a fixed capacity N for each slot. When
the size of Vi exceeds N, earlier appended entries are replaced fol-
lowing the First-In-First-Out (FIFO) strategy to ensure the vault re-
mains consistent. This design accounts for earlier members derived
from earlier training epochs, during which the features are less opti-
mized compared to those obtained in later epochs.

Vi « FIFO(Vi, h;). ©))

To formulate a compact latent prototype z} from the knowledge
vault, we design an encoder @Y, parameterized by @, which takes
the label y and the corresponding knowledge slice V} as input. The
encoder is constrained to generate latent representations from the ex-
tracted representation in the knowledge vault and also ensure the pri-
vacy of the latent prototypes, via means of differential privacy, e.g.,
by adding Gaussian noise € ~ A/(0, I). The latent prototype is thus
updated as follows:

piy ok = QUi VL), zh =p+ ok Oe 4)
To reconstruct the latent prototype back into the knowledge space, a
decoder P,j’ , parameterized by ¢, takes z¢, as input and outputs the
reconstructed knowledge:

Vi = P (z,). )

The training of this encoder-decoder pair is optimized by combining
reconstruction and distribution alignment losses:

Ctaen = By gy [IVE = Vil +KLa(ak 15 V) (). ©)

Remark: Note that the generated latent representation z. is derived
directly from local samples and captures the local data characteris-
tics. The alignment of the latent prototype with the normal distribu-
tion ensures global compatibility and removes local domain-specific
biases. Adding noise during the sampling process enhances privacy
by obfuscating sensitive details of local data and reduces the risk of
feature inversion attacks. This approach effectively combines privacy
preservation with compatibility for global aggregation.

3.4 Consensus-Driven Global Prototype Construction

Once local latent prototypes {zi}f:l are generated, all the clients
transmit their latent knowledge prototypes as well as their class la-
bels to a central server for aggregation. The server organizes the re-
ceived latent prototypes into groups based on their corresponding
class label i as {z%}r_,. The server’s objective is to construct a
global prototype z;, which aggregates knowledge in each class group
using Mahalanobis-based consensus weighting, proven robust under
highly skewed distributions (e.g., Dirichlet-ac = 0.1). To achieve
this consensus, we apply the Mahalanobis distance-based aggrega-
tion mechanism [1], which weights client contributions according to
their alignment with the central distribution of the latent space. Then,
the server computes the center p® and covariance matrix X°. The
Mahalanobis distance measures the deviation of each prototype from
the centre:

distr (2, 1) = (@), — )T ()1 (g — ). ()

By doing so, we have dist r(z},) to indicate how well each prototype
aligns with the group consensus. To ensure that the aggregation re-
flects the contributions of consistent prototypes while mitigating the

influence of outliers, the prototypes are re-weighted following the
principle that higher weights are assigned to prototypes with smaller
distances:

exp(—distar (zk, "))
S exp(—dista(z),, p?))

wj, = ®)
The global prototype for label 7 is then computed as a weighted com-
bination of the local prototypes:

K
z;:sz-zZ,. 9)
k=1

Remark: The global prototypes {z;} represent consensus-aligned
and generalizable knowledge of the shared label space, which are
contributed by all participating clients. These prototypes are dis-
tributed back to the clients for local adaptation. Since they are class-
wise aligned and decoder-compatible, they serve as a bridge between
diverse model architectures and to ensure cross-client knowledge
transfer without requiring parameter alignment.

3.5 Infusing Global Knowledge for Local Adaptation

Once the server constructs the global prototypes {zg}, these global
prototypes are distributed back to the participating clients. Each
client enhances its local model by incorporating global knowledge
as a constraint for model optimization. To utilize such global proto-
types, each client employs a latent prototype decoder P2, parameter-
ized by ¢. The decoder maps the received global prototypes z; back
into the knowledge space:

Vi = P (z), (10)

where ]A),i represents the reconstructed knowledge for class 7. The
decoder is designed to ensure compatibility with the local model’s
architecture, so that makes the reconstructed knowledge meets the
specific dimensionality requirements of the client. The reconstructed
global knowledge fi}c serves as a prior constraint during the client’s
local training process. It helps the local model M, align its learning
with the global knowledge while retaining the flexibility to adapt to
the client’s unique data characteristics. This is achieved through a
knowledge distillation objective where the global prototype acts as a
teacher, in addition to the primary task loss. Combining the encoder-
decoder loss in Eq. (6) the local model parameters are updated by
optimizing the following objectives:

Liocal = Luask (M (24), yi) + Alaisin (h, ff}i) + BLLaent, (11)

where Lk is the primary task loss, such as cross-entropy for clas-
sification tasks, and Lgisin is the knowledge distillation loss ensuring
alignment between the local model and the global prototype. The
term A balances the importance of the two objectives. This process
enables clients to leverage the globally aggregated knowledge to im-
prove generalization and reduce overfitting to local domain-specific
data. The integration of global prototypes ensures that clients benefit
from a shared understanding of the label space while retaining the
flexibility for local adaptations.

Remark: Global prototypes are distributed as encoded representa-
tions, inherently preserving privacy by preventing the exposure of
feature representations or model parameters. The aggregation pro-
cess further considers individual client contributions.



3.6 Discussion

Flexibility: The proposed FedLKP framework provides significant
flexibility by allowing clients to design their own encoder and de-
coder architectures to meet their specific computational and task
requirements. Despite this flexibility, the framework enforces con-
straints to ensure interoperability: all encoders must produce la-
tent prototypes z. of a fixed dimensionality dnig4 and align them to
a shared distribution (e.g., Gaussian A/ (0, I)). Similarly, decoders
must reconstruct global prototypes z, into representations compati-
ble with the client’s local model architecture. This balance between
flexibility and standardization ensures scalability and generalizabil-
ity across diverse federated learning settings.

Privacy and Security: The framework incorporates robust privacy
and security mechanisms to protect client data throughout the learn-
ing process. Latent prototypes are generated as latent representations,
so0 as to prevent direct reconstruction of raw data and ensure privacy
by design. During prototype generation, Gaussian noise is injected
into the latent representations to enhance differential privacy and ob-
scure sensitive information. Adding Gaussian noise during the sam-
pling process enhances privacy by obfuscating sensitive details in
the latent space, following VAE-style variational sampling [7], and
discouraging inversion even under strong non-IID conditions. These
prototypes are transmitted to the server using encryption, safeguard-
ing them against interception or unauthorized access. Additionally,
by aligning latent prototypes to a shared distribution, the frame-
work mitigates risks of feature inversion and ensures compatibility
for global aggregation. Unlike certain logits-based methods [18] that
require transferring sample-level labels to the server, potentially re-
vealing the data distribution, FedLKP framework utilizes only class-
level labels as keys for the prototypes. This design ensures that the
data distribution remains protected and avoids unnecessary disclo-
sure of sensitive information.

Communication Cost: The framework significantly reduces com-
munication overhead compared to traditional parameter-based FL
methods by exchanging compact latent prototypes rather than full
model parameters. For each client, the communication cost of trans-
mitting latent prototypes is proportional to the prototype dimension
d and the number of labels | V.|, i.e., O(dhia - |Ve|). This is consid-
erably smaller than transmitting high-dimensional features or model
weights, making the framework suitable for bandwidth-constrained
environments. The reduction in communication costs ensures effi-
ciency, even in scenarios involving a large number of clients.

Computational Overhead: The extra computational complexity of
the framework primarily arises from the operations of the encoder
and decoder. Encoding involves extracting label-wise latent repre-
sentation V. from the knowledge vault z., while decoding involves
reconstructing global knowledge representation from the global pro-
totypes. These operations are computationally efficient as it involves
only a few Fully Connected layers. Furthermore, the modularity of
the framework allows clients to choose encoder and decoder architec-
tures that align with their computational resources, enabling adapt-
ability without compromising efficiency.

4 Experiments

We evaluate the effectiveness of FedLKP through a series of experi-
ments designed to answer the following key questions: (1) How does
FedLKP compare with existing personalized FL baselines in terms
of model performance across clients? (2) How robust is FedLKP to

variations in client data heterogeneity and participation rates? We
implement all methods in a common FL simulation framework and
conduct experiments on three widely used benchmark datasets under
realistic non-IID settings. The results consistently demonstrate that
FedLKP achieves superior personalization performance, validating
both the theoretical and practical merits of our approach.

4.1 Datasets and Evaluation Metrics

We evaluated FedLKP on three tasks across different domains, in-
cluding: (1) CIFAR-10 for Computer Vision (CV) classification
tasks; (2) COVIDx [16] for medical image classification; and and
(3) AG News [25] for Natural Language Processing (NLP) task,
e.g. news classification. Each dataset was partitioned into N clients,
where each client had evenly partitioned but non-1ID subsets, in
which 75% of the data was used for training and 25% for testing. To
reflect the framework’s performance on local datasets, we employed
the Averaged Classification Accuracy (ACA) [13] as the objective
metric to evaluate the quantitative performance, which calculates the
average accuracy across all clients at the final round.

4.2 Implementation Details

For the CV tasks involving the CIFAR-10 and COVIDx datasets, we
utilized a three-layer CNN as the base model. For the natural lan-
guage processing task involving the AG News dataset, we employed
FastText [6] as the base model. All the models are trained for 2000
rounds with a batch size of 10, and the learning rate was set to 5¢73,
optimized by the Adam optimizer. All the clients were selected in
each round. We set the number of clients to 10 and 20 in the following
experiments, and all the clients were selected in each round. For the
latent prototype generation, both the encoder and decoder were im-
plemented as three-layer multilayer perceptrons (MLPs). The balanc-
ing parameters « and S in Eq. 11 were both set to 0.1. The encoder
transforms representations with dimensions { dgea+C, 128, 64, dhia },
where C' is the number of classes, df. is the feature dimensionality
(set to R®'2), and dyq is the dimensionality of the latent prototypes.
Typically, dhiq is smaller than dfe, to minimize communication over-
head, with a default dimensionality of R3? to ensure efficient com-
munication . The decoder reverses this transformation with mirrored
architecture. The number of slots in each knowledge vault was em-
pirically set to 500 to balance the storage-vs-performance trade-off,
which means it can memorize the 500 most recent features for each
class. All the models, including the task model and encoder/decoder
were trained for one epoch in each round. The experiments were im-
plemented using the PyTorch-based Personalized Federated Learn-
ing Library (PFLib) [24]. The experiments’ FL training jobs were
simulated and ran on a single NVIDIA A100 GPU.

4.3 Comparative Analysis

We compared FedLKP under different FL. heterogeneous settings:
one under data heterogeneity and the other under Full (i.e. data and
model) heterogeneity.

Data-Heterogeneity FL: In this scenario, we assume that all clients
share identical model architectures. To simulate highly skewed data
distributions, datasets were partitioned into Dirichlet distributions

1 we experimentally evaluated the influence of dfey across the range {8, 16,
32, 64, 128} and selected 32 as the default value to achieve a balance be-
tween communication cost and model performance



Table 2: Averaged classification accuracy (%) comparison across different datasets and methods under data-heterogeneity setting. Best results

are highlighted in bold.
CIFAR-10 COVIDx AGNews

Knowledge Method C=10 =20 C=10 C=20 C=10 C=20

FedAvg [10] 63.78 63.75 78.78 76.01 69.20 76.13
Model FedCAC [17] 87.48 88.37 91.89 97.96 96.69 93.91
Classifier FedPAC [20] 86.46 86.44 79.20 86.70 96.27 92.64
Label Logits FedDistill [5] 88.22 88.94 91.55 98.02 96.40 94.18
Prototype Feature FedProto [14] 88.37 88.69 91.60 98.01 95.52 89.99
Latent Prototype FedLKP (Ours) 88.52 89.60 92.28 98.02 96.96 94,22

Table 3: Averaged classification accuracy (%) comparison across dif-
ferent datasets and methods under full-heterogeneity setting. Best
results are highlighted in bold.

COVIDx Cifarl0
Protocol Method C=10 C=20 C=10 C=20
FedGH 91.58 82.68 88.05 88.30
partial  FedDistill 91.92 9799 88.06 88.88
FedLKP (Ours) 92.20 98.00 88.32 89.45
o FedDistill 91.11 9792 88.17 88.76
Holistic ~ FedLKP (Ours) 91.78 98.09 88.46 89.48

with the concentration parameter « set to 0.1, which represents a
highly non-IID distribution. Under these conditions, we evaluated
the proposed FedLKP framework against several existing methods,
including: FedAvg [10], the traditional model-averaging approach;
FedProto [14], which addresses data heterogeneity by learning class-
level prototypes; FedDistill [5], a logits-based method employing
federated distillation to mitigate non-1ID challenges; FedCAC [17],
which uses cautious collaboration to balance generalization and per-
sonalization; and FedPAC [20], a personalized federated learning
method that aligns feature spaces and enables classifier collabora-
tion. The performance of these approaches was measured using ACA
across various datasets and client configurations. The results, sum-
marized in Table 2, highlight the superior performance of the pro-
posed approach FedLKP in enhancing local model accuracy and ro-
bustness under conditions of extreme non-IID data.

Full-Heterogeneity FL: On top of the data-heterogeneous setting,
we further introduce varying model architectures across clients in
the experiments to highlight challenges posed by data and model
heterogeneity [8]. For this setting, we designed two scenarios that
simulate two types of model heterogeneity: (1) Partial: In this sce-
nario, models across clients have a few layer differences while ma-
jority of the layers are the same. (2) Holistic: In this scenario,
models across clients have different numbers of hidden units and
cause the feature dimensionality to be different. For both settings,
we evenly grouped the clients into five groups, each with a distinct
model architecture among different groups, and within each group,
the models were identical. In this setting, only FedGH, FedDistill,
and FedLKP are compared, as most of the compared methods in
the data-heterogeneous setting could not handle model heterogene-
ity. The results, summarized in Table 3, demonstrate the robustness
of the proposed approach FedLKP to the fully heterogeneous setting.
These results further validate our framework’s ability to operate un-
der full heterogeneity, where neither model weights nor logits can be
easily aligned.

4.4 Component Analysis

We analyzed the contributions of individual components in the pro-
posed framework by incrementally integrating its key elements.
Specifically, the baseline method corresponds to the FedProto model.
The LatentGen variant extends it by introducing latent prototype
generation for compact client knowledge. Finally, the full FedLKP
model enhances the framework by integrating global consensus-
based aggregation to align prototypes across clients.

AGNews CovidX Cifar10
88.6

97.0

©
5]
n

©
o
o
@
el
o

©
>
=)

Accuracy (%)

S 2
> >
3 3
< g
5 5
g 8
< <

©
g
)
<Q
©
®
o
S

©

o

o
<2
)

Baseline LatentGen FedLKP Baseline LatentGen FedLKP Baseline LatentGen FedLKP

Figure 2: Component Analysis on FedLKP. The baseline refers to the
FedProto method, LatentGen involves the latent prototype genera-
tion, FedLKP further incorporates consensus-based aggregation.

It can be observed from Fig. 2 that the LatentGen variant consis-
tently outperforms the baseline by leveraging the knowledge vault to
store label-specific representations and introducing latent prototypes
to encode compact client knowledge. This improvement demon-
strates the importance of using latent prototypes to capture local
data characteristics while mitigating domain-specific biases. More-
over, when global consensus-based aggregation is introduced in the
full FedLKP model, the performance improves further, as the aggre-
gated global prototypes provide a generalized understanding of the
label space, and therefore enhancing the robustness of local models
to data heterogeneity.

4.5 Visualizations of Feature Space Clustering

To further evaluate the effectiveness of the proposed FedLKP frame-
work in aligning and generalizing feature representations, we visual-
ized the feature distribution of the final layer (before the classification
layer) with t-SNE [15]. As shown in Fig. 3, the feature distribution
produced by the proposed FedLKP framework is significantly more
compact and well-clustered compared to the other methods.
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P

Figure 3: t-SNE visualization of the feature space clustering.



The dense clustering of features within the same class indicates
improved intra-class consistency, while the clear separation between
clusters highlights better inter-class discrimination. This further vali-
dates the framework’s design in facilitating effective knowledge shar-
ing while preserving the individuality of local client models.

4.6 Limitations

Despite its effectiveness, the proposed framework has certain lim-
itations that warrant further investigation. First, the global consen-
sus mechanism relies on label information to align latent prototypes
across clients. This may restrict the framework’s utility in settings
where label information is incomplete, inconsistent, or noisy. Fur-
thermore, our current method relies on labeled prototypes, which
may limit its applicability in semi-supervised or unsupervised FL.
Extending the framework to label-free scenarios via clustering or
contrastive learning is a promising future direction.

5 Conclusion and Future Work

In this paper, we proposed the FedLKP framework to effectively
address the intertwined challenges of model and data heterogene-
ity in Federated Learning, while ensuring privacy and efficiency.
By introducing latent prototypes generated from the local knowl-
edge vaults as compact representations of client knowledge, FedLKP
enables robust knowledge sharing without requiring access to raw
data or full model parameters. FedLKP allows clients to employ
their own encoder and decoder architectures to fit the extracted fea-
tures while enabling adaptation to diverse computational and task-
specific requirements. Meanwhile, latent prototypes ensure privacy
through an additional layer of encoding and differential protection,
allowing global aggregation while maintaining local data privacy.
FedLKP is designed to significantly reduce communication overhead
by transmitting customized compact latent prototypes rather than
full model parameters while maintaining better generalization and
performance. Extensive experiments on diverse benchmarks demon-
strate, under various heterogeneity settings, the superior performance
of our framework in terms of accuracy and effectiveness.

One future direction is to develop label-agnostic aggregation
methods that rely on latent feature similarities rather than explicit
labels. Second, the framework assumes static client participation and
relatively stable data distributions during training. However, clients
often join or leave dynamically in real-world federated learning en-
vironments, and their local data distributions may evolve over time.
Such dynamics can disrupt the consistency of global prototype ag-
gregation and the effectiveness of global-to-local knowledge trans-
fer. Future work could focus on designing adaptive mechanisms that
account for client heterogeneity with dynamic data shifts.
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