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Abstract
Sleep stages refer to the distinct processes within a person’s sleep cycle. They are essential for assessing mental and physical
health. Existing sleep stage classification models typically improve performance through increased computation complexity
or be trained with more labeled data. These models may result in overly heavy models that are unrealistically not applicable
in real-world scenarios. To address this issue, this paper proposes a Spatial-Channel Attention Network for Sleep Stage
Classification (SCANSleepNet). This framework is built on the time-frequency characteristics of EEG signals and the con-
version rules of sleep stages. It constructs a lightweight deep-learning system that integrates multi-scale frequency analysis
and dynamic feature enhancement. Its improvements lie in two main aspects. First, a Spatial-Channel Dimensional Atten-
tion (SCDA) block is designed to model the dynamic transition among stages while requiring fewer parameters. Second, a
weighted cross-entropy loss function is introduced to address class imbalance without dependence on extra data augmentation.
It enhances the model’s lightness and suitability for clinical applications. Experimental results show that the SCANSleepNet
achieved 85.52% accuracy in the Fpz-Cz channel and 82.16% in the Pz-Oz channel on the Sleep-EDF dataset. It makes a
good balance between classification accuracy and efficiency.

Keywords Deep learning · Sleep stage classification · Attention mechanism · Multiscale atrous convolution

1 Introduction

Monitoring and evaluating sleep quality are essential for
maintaining overall health and cognitive function [1–4].
Automatic sleep stage classification is vital to assess sleep
quality and detect potential sleep disorders. Advances in
deep learning technology have facilitated the development
of automated sleep stage classification algorithms that out-
perform conventional machine learning approaches and even
human specialists in accuracy and efficiency [5, 6]. Sleep
experts typically use multiple channels polysomnography,
e.g., electroencephalogram (EEG), electrooculogram, elec-
tromyogram, and electrocardiogram, to determine the stages
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of sleep [7]. Among these channels, single-channel EEG has
gained attention in sleep assessment due to its flexibility and
convenience.

The single-channel EEG recordings are typically seg-
mented into 30-second intervals, with each segment manu-
ally reviewed by sleep experts to classify them into six stages,
namelyWakefulness (W), Rapid EyeMovement (REM), and
four non-REM stages (N1, N2, N3, and N4) [8]. Significant
differences in the spectral characteristics of brain electri-
cal signals are presented in each stage of the human sleep
cycle. In the initial N1 stage of sleep, the EEG is mainly
characterized by theta waves (4-8Hz) accompanied by a
small amount of alpha waves (8-12Hz). After entering the
N2 stage, the amplitude of the EEG signal is significantly
enhanced. Not only do the theta wave characteristics con-
tinue to intensify, but K-complex waves also appear. The
deep sleep N3 stage is dominated by a mixture of theta and
delta waves (0-4Hz), with a significant increase in the pro-
portion of delta waves. By the N4 stage, the frequency of the
EEG signal is further reduced to the range of 0.5-2Hz. The
REM sleep period includes activity in the sigma waves (12-
15Hz), beta waves (15-30Hz), and gamma waves (greater
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than 30Hz). The Wakefulness state primarily exhibits beta-
wave activity. This manual procedure is meticulous, dull, and
time-consuming. Therefore, an automated system for classi-
fying sleep stages is essential to support sleep experts.

In recent years, the rapid development of deep learn-
ing technology has injected new vitality into the research
of sleep stage classification. However, current models have
many limitations when they process complex sleep sig-
nals and practical application scenarios. Previous research
divides end-to-end models into two main categories: meth-
ods based on recurrent neural networks (RNNs) and their
variants, and composite models combined with attention
mechanisms. Although RNN-based methods (such as LSTM
and Bi-LSTM) have demonstrated excellent performance in
sleep stage classification [5, 6, 9, 10]. The inherent problems
with long sequences, such as gradient decay or explosion,
restrict the stability and performance of the models. In addi-
tion, the serial computation results in low efficiency during
model optimization and makes it challenging to meet the
requirements of practical applications. To improve the com-
putational efficiency of the models, Zhao et al. [11] proposed
a multi-task deep learning model integrating sequence sig-
nal reconstruction. However, it has limitations in feature
extraction as they don’t fully account for model sensitivity
to different frequency components.

To solve the data class imbalance issue,Mousavi et al. [12]
proposed a Synthetic Minority Over-sampling Technique
(SMOTE). Chen et al. [13] optimized signal generation
quality with the multi-scale convolution and deep spectrum
interaction modules, and proposed an enhancement method
via generateddata label reconstruction and time-domain reor-
ganization. However, the model complexity limits practical
deployment. Ying et al. [14] built a single-channel dual-
stream network (Ds-ASSNet). It extracts fine and coarse-
grained temporal features with a multi-scale 1D-CNN. The
features are combined with the Bidirectional Gated Recur-
rent Unit (BiGRU) to capture temporal dependencies. With
the rapid advancement of artificial intelligence technology,
explainable artificial intelligence has become a focal point
in both academic and industrial research [15]. The lack of
model interpretability remains a major barrier to the wide
application of transfer learning.

To address the issues of data imbalance, insufficient
exploitation of the frequency sensitivity of EEG signals, lim-
ited model interpretability, and high computational resource
demands, we propose a lightweight deep learning frame-
work for sleep stage classification, termed spatial-channel
attention Network (SCANSleepNet). This framework cap-
tures time-domain EEG signal features at multiple scales
through dilated convolution operations. It performs fine-
grained feature encoding and extraction of various frequency
components, thereby fully leveraging the frequency sensi-
tivity of EEG signals. At the same time, a Spatial-Channel

Dimensional Attention (SCDA) block module is intro-
duced to model the dynamic transition relationships between
sleep stages and capture important features and potential
changes. Through optimization of the network structure and
attention mechanism, SCANSleepNet reduces the demand
for computing resources and significantly improves oper-
ational efficiency. The proposed model provides an effi-
cient, lightweight, and easy-to-deploy solution for the sleep
stage classification task. Comprehensive experiments on the
Sleep-EDF dataset showcase SCANSleepNet’s superior per-
formance, especially on the Fpz-Cz and Pz-Oz channels.
This demonstrates its effectiveness in real-world sleep stage
classification tasks. The key contributions of this work are
outlined as follows.

• We propose a SCANSleepNet for sleep stage classi-
fication using raw single-channel EEG signals. It can
effectively learn and integrate spatial and channel infor-
mation with varying frequency components through
CNNs and attention modules.

• We introduce an SCDA block to capture temporal corre-
lations in both the feature space and channel dimensions
of complex time series.

• We developed a loss function termed weighted focal
cross-entropy loss to effectively address class imbalance
without dependence on data augmentation. It considers
both the differences in class numbers and the learning
difficulties across categories.

2 Related work

2.1 Convolutional neural networks

Identifying sleep stages is of significant importance for
diagnosing sleep disorders and assessing psychological con-
ditions. In early studies, methods were employed to classify
sleep stages through Support Vector Machines (SVM) and
Random Forests (RF). However, these approaches require
extensive prior knowledge of feature engineering. There-
fore, researchers have increasingly adopted deep learning
networks for sleep stage classification. Tsinalis et al. [16] uti-
lized Convolutional Neural Networks to learn deep features
for classification from single-channel EEG signals without
prior knowledge. Chriskos et al. [17] utilized the SMOTE
algorithm to enable CNNs to appropriately consider small
samples and make accurate identifications in the medical
domain. Sokolovsky et al. [18] employed deeper network
architectures to classify sleep stages with multi-channel sig-
nals.

The CNN models excel in sleep stage classification and
show their ability to effectively recognize features within
EEG signals without the need for manual feature extraction.
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However, sleep stage signals are inherently continuous over
time and exhibit temporal dependencies. Researchers have
proposed RNNs to address this challenge. RNNs excel at
learning sequential patternswithin data. They are particularly
suitable for tasks that require the comprehension of temporal
contexts, such as the analysis of continuous signals in sleep
stage classification.

2.2 Recurrent neural networks

Recurrent Neural Networks (RNNs) are particularly adept
at handling time series due to their distinctive structure and
design advantages. Yin et al. [19] utilized wearable medical
sensors to collect biological signal data and applied LSTM
for analysis. DeepSleepNet [6] is an advanced method that
employs deep learning techniques for sleep stage classifica-
tion. This approach applies convolutional neural networks
to derive time-invariant characteristics from single-channel
electroencephalogram data. Meanwhile, it uses bidirectional
long-term and short-term memory networks (Bi-LSTM) to
capture the transition patterns that exist between various
stages of sleep. In CCRRSleepNet [9], a hybrid architecture
of CNNs and RNNs was built to capture high-order time-
varying and time-invariant signal characteristics and model
the relationships between sleep stages’ transitions.

In sleep stage classification, RNNs are typically employed
after CNNs to model the subtle transition relationships
between different sleep stages. However, the “black box”
characteristic of RNNs makes them insufficiently inter-
pretable in the medical field. In addition, when dealing with
long sequences, themodel has inherent problems such as van-
ishinggradients or explodinggradients. These issues severely
limit the stability and performance of the model. Moreover,
the feature of serial computation reduces the efficiency of the
training.

2.3 Attentionmechanism

The rise of the Transformer architecture and its extensive
applications in various fields [20, 21] have made it a research
hotspot. Its remarkable sequence modeling capabilities and
global attention mechanism have contributed to its popular-
ity in multiple fields such as natural language processing
and computer vision. Compared with traditional models, the
Transformer architecture usually requires more parameters
and computational resources to maintain its performance
advantages. This makes the model increasingly burdensome
and the trend stands in sharp contrast to the urgent need for
lightweight models in various industries in recent years [22–
24]. In practical applications, especially in scenarios with
limited resources, the lightweight of models has become cru-
cial.

Eldele et al. [25] proposed an AttnSleep model based
on multi-resolution CNNs and attention mechanisms. The
model first extracts low-frequency and high-frequency fea-
tures from EEG signals and then captures temporal depen-
dencies between features through a Time Context Encoder
(TCE) equipped with multi-head attention mechanisms.
Mousavi et al. [10] proposed a SleepEEGNet model that
constructed a sequence-to-sequence model based on an
encoder-decoder architecture. This approach first extracts
invariant features fromEEGsignals, then processes these fea-
tures through a bidirectional recurrent convolutional network
encoder, and combines an attention module to enhance the
representation of key features. These methods have limita-
tions in feature extraction. They only extract specific features
from raw time-domain signals and do not fully consider
the model’s sensitivity to different frequency components.
Meanwhile, previous studies confirm the significance of
spatio-temporal analysis for video data. Temporal analysis
captures the temporal relations and changes in actions and
locates key time points. Spatial analysis focuses on fram-
ing visual content to identify key regions and objects. Their
combination helps understand the model’s spatio-temporal
focus and improves interpretability and performance [26].
To address this issue, we propose a method based on dilated
convolution to expand the model’s receptive field and cap-
ture broader spatial and temporal information. We extend
spatio-temporal analysis to EEG signal processing and intro-
duce a Spatial-Channel Dimensional Attention block. The
spatial dimension captures the signal’s spatial distribution
via dilated convolutions. The channel dimension reflects its
activity in different frequency bands. These two dimensions
comprehensively capture key features and patterns for sub-
sequent analysis and classification.

3 The proposedmethod

3.1 Overview of SCANSleepNet

The architecture of SCANSleepNet is shown inFig. 1. It com-
prises three key modules, namely the Intra-Frame Feature
Extraction (IFFE)module, Temporal Feature Capture (TFC)
module, and classificationmodule. The IFFEmodule extracts
meaningful intra-frame features from the input data, which
reflect the frequency information that remains constant over
time. The (TFC) module encodes the extracted feature maps
to capture and represent changes in the data across the time
dimension. This allows the system to recognize and lever-
age temporal correlations. Finally, the classification module
uses these extracted and encoded features to decode tempo-
ral information and perform precise classification tasks. This
enables the accurate determination and analysis of the stages
of sleep. Overall, this multi-layered processing architecture
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Fig. 1 Overall architecture of the SCANSleepNet

ensures the system’s efficiency and accuracy in real-time
monitoring and analysis of sleep patterns.

3.2 Intra-frame feature extractionmodule

This approach is designed to analyze non-stationary time-
varying EEG signals and extract intra-frame relevant features
from the input data. It employs a frame-level CNN architec-
ture from CCRRSleep [9]. The use of convolutional kernels
of different sizes helps to better extract frequency features of
different sleep stages.

TheConv (25, 64, 1) denotes a convolutional layerwith the
kernel of size of 25 × 25, 64 filters, and a stride of 1. Like-
wise, MaxPooling (5) indicates a maximum pooling layer
uses a kernel size of 5. Each convolutional layer includes a
batch normalization layer [27] and utilizes Mish [28] as its
activation function. It is defined as follows:

Mish(x) = x · tanh (
log

(
1 + ex

))
. (1)

In light of the aforementioned spectral characteristics, we
select two distinct convolutional kernel sizes, namely 25 and
100, to construct a highly efficient feature extraction system.
The rationale behind this selection is based on the inherent
physical relationship among the sampling rate (Fs), the con-
volutional kernel size (K ), and the target frequency ( f ). It
can be formulated as:

f = Fs
K

. (2)

Under a 100Hz sampling rate, when K = 25, the theoreti-
cally captured frequency is 4Hz. It covers the thetawaveband
(4-8Hz) that spans N1-N3 stages. When K = 100, the the-
oretical frequency is 1Hz, which matches the low-frequency
characteristics of the N3 stage dominated by delta waves
(0-4Hz) and the N4 stage (0.5-2Hz). This dual-scale design

enables targeted capture of critical frequency-domain feature
differences in the non-REM cycle (N1-N4). Considering that
the REM stage primarily involves high-frequency compo-
nents above 12Hz (sigma/beta/gamma waves), this study did
not adopt a specially designed convolutional kernel archi-
tecture to capture these signal features. There are two main
advantages to the proposedmodule.On the one hand, through
the convolutional kernel design with physical constraints, it
is ensured that the feature extraction process has a clear phys-
iological significance orientation. On the other hand, the size
combination of 25/100 not only ensures the accurate capture
of theta/delta waves but also takes into account the feature
coverage efficiency of different sleep stages.

The features extracted from the two branches of the IFFE
module are concatenated along the channel dimension. If
F1 ∈ R

H×W×C1 and F2 ∈ R
H×W×C2 are the feature maps

from the two branches, the concatenated feature map Fconcat
is given by:

Fconcat = [F1; F2] ∈ R
H×W×(C1+C2). (3)

Across both branches of the network, the pooling kernel
size and the convolution stride before it remains consistent.
The features that are extracted from the CNN branches are
concatenated, and a dropout layer is applied with a reten-
tion rate of 0.5 to mitigate overfitting. Furthermore, the
network incorporates MSAC block [9] to extract features.
The structure of the MSAC block is shown in Fig. 2. The
MSAC brock [9] employs convolutional layers with different
depths and field sizes. These layers enable the comprehen-
sive extraction of frequency components and features with
complexities from sleep signals. Let the input feature map be
Xin and the output feature map be Xout . In the diagram, the
convolution operation is denoted asConv, the concatenation
operation as Concat , and the batch normalization and acti-
vation operation as Bn. The specific calculation steps are as
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Fig. 2 Framework of the MSAC block

follows:

T1 = Conv(1, 64, N = 1)(X in),

T2 = Conv(3, 64, N = 1)(T1),

T3 = Conv(3, 64, N = 3)(T2),

T4 = Conv(3, 64, N = 5)(Conv(3, 64, N = 1)(T2)),

Tc = Concat(T1, T2, T3, T4),

Xout = Bn(Tc),

(4)

where Conv(a, b, N = c) represents a convolutional layer
with a kernel size of a × a, an output channel number of b,
and a dilation rate of c. The final output feature map is gener-
ated by performing batch normalization on the concatenated
feature map Tconcat and using the Mish activation function.

3.3 Temporal feature capture module

The TFC module is designed to capture the temporal corre-
lations within the input features. The TFCmodule comprises
a causal convolution, a Spatial-Channel Dimensional Atten-
tion (SCDA) block, as well as a fully connected (FC) layer.
The SCDA block is illustrated in Fig. 3. Additionally, two
identical structures of the TFC module are stacked to gen-
erate the final features. The input to the TFC module is
denoted as X = {x1, . . . , xN } ∈ R

N×d and it consists
of N features. Each feature has a length of d. Firstly, we
apply causal convolutions to generate X̂ from X, denoted as
X̂ = φ (X). Then hat mathb f X is inputted into the SCDA
Block. SCDA block captures relevant features and attention
weights from the input tensor. These operations help extract
meaningful information and capture both channel-wise and
spatial-wise correlations within the data. On the dimension
N of the input feature map, average pooling and maximum

Fig. 3 Framework of the SCDA block

pooling are applied to generate the compressed feature vec-
tors x̂avg_N ∈ R

1×d and x̂max_N ∈ R
1×d .Meanwhile, average

pooling is performed on the feature dimension d to generate
x̂avg_d ∈ R

N×1. A convolution operation is used to gener-
ate a high-order representation x̂conv with local correlation
characteristics.

Subsequently, x̂avg_N and x̂max_N pass through two lin-
ear layers to produce x̂avg_fc and x̂max_fc, respectively. Then,
x̂avg_fc and x̂max_fc aremultiplied together. The sigmoid func-
tion activates the linear layers.

x̂avg_fc = sigmoid
(
x̂avg_N

)
,

x̂max_fc = sigmoid
(
x̂max_N

)
,

(5)

where x̂avg_d is obtained with a convolutional layer of kernel
size 7 and stride 1. The output is multiplied by x̂avg_fc and
x̂max_fc to produce x̂weight. The x̂weight are multiplied with
x̂conv to produce the output of the SCDA block. The results
of the SCDA block are added to those of the causal convolu-
tion. The combined output of the TFC module is then passed
through a fully connected layer to produce the final result.

3.4 Weighted focal cross-entropy loss

There are twomain challenges in classifying sleep stage sam-
ples. First, distinguishing between different class samples is
challenging. For instance, the N1 stage is often misclassified
due to its transitional nature and similarity to adjacent stages,
with its short duration and limited sample size further com-
plicating classification. Second, there is variability among
samples within the same class, primarily influenced by the
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importance of intra-class features and noise. Individual dif-
ferences,measurement errors, and environmental factors lead
to diverse sample characteristics. The model must exhibit
higher robustness to handle such complex data.

Prior studies have addressed the data imbalance issue
through the focal loss function [9]. The mechanism of focal
loss adjusts sampleweights to prioritize challenging samples.
This enhances training performance under class imbalance.
The focal loss introduces weights for difficult-to-easy sam-
ples and dynamically adjusts the weights based on the
model’s predictions. Misclassified samples receive higher
weights, which enables the model to focus more on these
challenging instances during subsequent training. However,
since the focal loss function was initially created to reduce
the emphasis on easily classified samples and prioritize chal-
lenging samples, it may not sufficiently penalize the misclas-
sification of easily classified samples in certain cases. This
can lead to suboptimal performance when the differences
between classes are small or when there is noise interference.

To overcome this limitation, we propose a weighted focal
cross-entropy loss function that integrates both the focal loss
and the class-aware loss function. This allows the model
to effectively handle class imbalance and focus on learning
challenging samples during the optimization process. The
computation formula for the Weighted focal cross-entropy
loss function is as follows:

L
(
y, ŷ

) = − (1 − β)
1

M

M∑

k=1

K∑

i=1

wkyki log
(
ŷki

) − β
(
1 − ŷ

)r log
(
ŷ
)
,

S.T. ωk = μk · max (1, log (M/Mk)),

(6)

where ωk denotes the weight allocated to the class k. M
denotes the number of samples in a specific sleep stage type,
and Mk represents the total number of samples in all sleep
stages.

The combination of focal loss with class-specific cross-
entropy loss yields the weighted focal cross-entropy loss
function. It effectively addresses the issue of class imbalance
during the optimization process. The weighted focal cross-
entropy loss function assigns higher weights to difficult-to-
classify samples. This ensures that the model pays more
attention to these challenging instances. Thus, it improves
the model’s ability to recognize minority-class samples. The
weighted focal cross-entropy loss function also emphasizes
difficult samples, which prevents the model from overfitting
to the majority class. As a result, the model learns more
representative features during the optimization phase, which
improves performance in practical applications. Finally, the
Adam optimizer [29] is adopted to update the model param-
eters by minimizing the Weighted focal cross-entropy loss
function.

4 Experimental results and analysis

4.1 Evaluationmetrics

To gain a comprehensive understanding of the model’s per-
formance, several evaluation metrics were employed. For
per-class evaluation, metrics such as precision, recall, and
F1-score were considered. Precision measures the accuracy
of the model’s predictions, recall focuses on the proportion
of actual positive samples that were captured by the model,
and the F1-score provides a harmonic mean of precision and
recall, reflecting the model’s overall classification capability.
Additionally, to assess the model’s effectiveness in over-
all classification tasks, we used Macro-averaging F1-score
(MF1), overall Accuracy, and Cohen’s Kappa coefficient (k).
The MF1 represents the average of the F1-scores across
different classes and offers insight into the model’s bal-
anced performance across all categories. Overall accuracy
reflects the proportion of correctly predicted samples out of
all samples. Cohen’s Kappa coefficient measures the agree-
ment between the model’s predictions and the actual labels.
It accounts for the effect of random guessing and offers a
more reliable evaluation of classification performance. These
results will help optimize the model to enhance its accuracy
and robustness in sleep stage classification tasks.

4.2 Benchmark dataset

The Sleep-EDF [30] dataset is adopted for performance
assessment. This dataset features a sleep-cassette subset com-
prising 39 records from 20 subjects. The records include
overnight polysomnographic sleep data from healthy Cau-
casian individuals aged 25 to 101 without sleep-related
medications. Based on the R&K standard, expert annotations
provide a reliable classification of the different sleep stages.
In this study, stages S3 and S4 were combined into stage N3,
following American Academy of Sleep Medicine (AASM)
guidelines. The EEG data analyzed were from the Fpz-Cz
and Pz-Oz channels, sampled at 100 Hz.

To avoid any overlap between training and testing sets for
the same subjects and to ensure fair and unbiased compar-
isons with prior research, we followed the approach outlined
in CCRRSleep [9]. Before and after sleep, we selected the
Wake (W) period data from 30 minutes.

4.3 Experimental results

Table 1 presents the data analysis results for the Fpz-Cz chan-
nel and Pz-Oz channel. It includes a confusionmatrix derived
from 20-fold cross-validation. The matrix displays true and
predicted class labels, while precision, recall, and F1 score
values are provided for each category. In the Fpz-Cz chan-
nel, the Pre of the W stage reaches 90.03%, and the Pre of
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Table 1 Performance of SCANSleepNet on Fpz-Cz and Pz-Oz channels

Stage Fpz-Cz Predicted Performance(%) Pz-Oz Predicted Performance(%)

W N1 N2 N3 REM Pre Re F1 W N1 N2 N3 REM Pre Re F1

W 7420 349 151 25 208 90.03 91.01 90.52 7016 286 104 13 288 85.18 91.03 88.01

N1 463 926 582 4 829 50.03 39.79 44.39 714 512 566 4 1007 42.77 18.27 25.60

N2 182 239 15996 529 853 89.34 89.61 89.47 229 192 15414 809 1154 87.29 86.61 86.95

N3 25 0 471 5204 3 90.28 90.76 90.52 29 2 804 4853 15 85.40 85.10 85.25

REM 152 337 704 2 6522 77.50 80.86 79.15 249 205 770 4 6489 72.48 84.09 77.85

Bold numbers represent correct classifications

the N3 stage is 90.28%, demonstrating outstanding classifi-
cation performance; the N2 stage also has a Pre of 89.34%.
In the Pz-Oz channel, the N2 stage shows a Pre of 87.29%.
However, the N1 stage classification accuracy in both chan-
nels is relatively low: the Fpz-Cz N1 stage has a Pre of only
50.03%, while the Pz-Oz N1 stage Pre drops to 42.77%.

The comparison of SCANSleepNet with other methods
using the Fpz-Cz EEG channel is listed in Table 2. One can
see that SCANSleepNet shows excellent per-class F1-scores.
In the wakefulness (W1) stage, it reaches an F1-score of
90.52%. This indicates its significant advantage in identify-
ingwakefulness. In theN2 sleep stage, it achieves anF1-score
of 89.61%. In the N3 sleep stage, it achieves an F1-score
of 90.76%. The model can effectively capture the unique
characteristics of these sleep stages. This reflects its adapt-
ability and precision in dealing with different sleep stages.
In terms of overall metrics, SCANSleepNet has an accuracy
of 85.52%. It has an MF1 score of 78.31%. There is a good
balance between them. It has a strong generalization ability
across multiple sleep stages. The Kappa coefficient is 0.80.
This further proves its robustness in sleep stage classification.

The comparison of SCANSleepNet with other methods
using the Pz-Oz EEG channel is shown in Table 3. In the
wakeful stage, it maintains an F1-score of 88.01%. This
highlights its versatility for different electrode placements.
SCANSleepNet stands out as a top-performing solution

comparedwith othermodels. Its performance surpasseswell-
established models. These models include SleepEEG [10],
ResnetLSTM [31],MultitaskCNN [32], andCCRRSleep [9].
The computational complexity and FLOPs compared with
other models are shown in Table 4. It shows that SCANsleep-
Net improves computational efficiency while maintaining
classification accuracy. It reduces FLOPs to 31.15 million
(49.7% less than AttnSleep’s 61.97 million) which demon-
strates substantial resource savings for edge applications.
On Fpz-Cz EEG channels, SCANsleepNet achieves 85.52%
sleep staging accuracy (1.12% higher than AttnSleep) with a
Kappa coefficient of 0.80. The balance of efficiency and per-
formance makes it ideal for sleep stage classification tasks.

5 Ablation study

5.1 Component analysis

SCANSleepNet incorporates the IFFE module, TFC mod-
ule, and WFCE loss function. To assess the effectiveness of
each module within SCANSleepNet, we conducted an abla-
tion study using the Sleep-EDF-20 dataset’s Fpz-Cz channel.
Specifically, we evaluated the TFC module and the influence
of the weighted focal cross-entropy loss function. Counter-
parts are denoted as follows.

Table 2 Comparison of
SCANSleepNet with other
methods using Fpz-Cz channel

Method Per-Class F1-score Overall Metrics

W1 N1 N2 N3 REM Accuracy MF1 k

DeepSleep [6] 84.70 46.60 85.90 84.80 82.40 81.90 76.60 0.76

SleepEEG [10] 89.40 44.40 84.70 84.60 79.60 81.50 76.60 0.75

ResnetLSTM [31] 86.50 28.40 87.70 89.80 76.20 82.50 73.70 0.76

MultitaskCNN [32] 87.90 33.50 87.50 85.80 80.30 83.10 75.00 0.77

AttnSleep [25] 89.70 42.60 88.80 90.20 79.00 84.40 78.10 0.79

CCRRSleep [9] 89.01 51.73 87.25 88.20 82.86 84.29 79.81 0.78

U-Time [33] 87.00 52.00 86.00 84.00 84.00 − 79.00 −
SCANSleepNet 90.52 39.79 89.61 90.76 80.86 85.52 78.31 0.80

The best and second-best results are marked in red and blue, respectively
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Table 3 Comparison of
SCANSleepNet with other
methods using Pz-Oz channel

Method Per-Class F1-score Overall Metrics

W1 N1 N2 N3 REM Acc MF1 k

DeepSleep [6] 88.10 37.00 82.70 77.30 80.30 79.80 73.10 0.72

ResnetLSTM [31] 85.60 24.90 88.90 79.20 86.30 81.00 73.60 −
CCRRSleep [9] 86.01 41.54 84.87 80.97 79.56 80.31 74.59 0.73

SCANSleepNet 88.01 25.60 86.95 85.25 77.85 82.16 72.73 0.75

The best and second-best results are marked in red and blue, respectively

• IFFE only: Using only the IFFE module resulted in an
accuracy of 84.02%, an MF1 score of 76.73, and a k
value of 0.78. This establishes a baseline for evaluating
the impact of temporal feature capture.

• IFFE + One TFC: Adding a single layer of TFC to
IFFE improved the accuracy to 84.07%, theMF1 score to
78.00, and the k value to 0.78. This highlights the signifi-
cant role of temporal feature capture in enhancing model
performance.

• IFFE + Two TFC: Utilizing two layers of TFC with the
focal loss function achieved an accuracy of 84.60%. It
also resulted in an MF1 score of 77.39, and a k value of
0.79. This indicates further performance improvements,
showcasing the benefits of additional temporal feature
capture layers.

• IFFE + Two TFC with Class-aware loss: When
employing the class-aware (CA) loss function, the model
achieved an accuracy of 84.21%, an MF1 score of 76.20,
and a k value of 0.78. While this variant shows some
improvement, it does not surpass the performance of the
focal loss function variant.

• SCANSleepNet (Ours): The proposed SCANSleepNet,
which includes IFFE, two TFC modules, and the WFCE
loss function, achieved the highest performance with an
accuracy of 85.52%, anMF1 score of 78.31, and a k value
of 0.80. These results underscore the effectiveness of the
WFCE loss function in addressing class imbalance and
challenging samples.

Table 4 Comparative results of computational efficiency in Flops and
Parameters

Model # Flops (M) # Parameters (M)

U-time 174.27 2.37

CCRR 2197.21 25.71

deepsleep 1050.96 22.65

sleepeeg 198.29 2.64

AttnSleep 61.97 0.72

Sleepeeg 499.44 24.08

SCAN(ours) 31.15 0.26

The comparative results are shown in Table 5. It demon-
strates the significant contributions of each componentwithin
SCANSleepNet. Specifically, the TFC module plays a cru-
cial role in the model. They capture time-related features of
EEG data transitions between different stages, which signifi-
cantly enhances themodel’s ability to learn complex patterns.
Additionally, the Weighted focal cross-entropy loss function
excels in addressing data imbalance issues. This function
dynamically adjusts the weights of hard-to-classify samples
and initially determines the penalty for each class based
on the number of classes, ensuring that the model focuses
more on minority and difficult-to-classify samples during
training and avoids potential overfitting problems associ-
ated with traditional loss functions. Overall, SCANSleepNet
demonstrates robust capabilities in accurately classifying
sleep stages. Its deep learning of temporal features and effec-
tive handling of data imbalance highlight its effectiveness and
potential for practical applications in sleep monitoring.

5.2 Variation of transform

In this section, we discussed Transform’s feature extrac-
tion capabilities. In the IFFE module, we replaced the CNN
feature extraction preceding the MSCA block with a Trans-
former encoder. Given computational resource constraints,
the Transformer encoder was limited to 1 layer and themulti-
head attention mechanism was configured with 4 heads.
While this simplification partially mitigates computational
resource constraints, it inevitably weakens the encoder’s
information representation capability. As shown in Table 6,
the performance of the model declines significantly after
the adoption of the Transformer encoder. On the Sleep-EDF
Fpz Cz channel, the overall accuracy drops from 85.52% to
75.70%, the macro-average F1 score decreases from 78.31%
to 67.00%, and Cohen’s kappa score falls from 0.80 to 0.66.

5.3 Variation of one-dimensional convolution

In this section, we explored the role of causal convolution
in the TFC module. Specifically, we replaced causal con-
volution with one-dimensional convolution and conducted
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Table 5 Ablation study of
counterparts on the
Sleep-EDF-20 dataset’s Fpz-Cz
channel

Methods Focal CA WFCE Acc. (%) MF1 (%) k

IFFE � 84.02 76.73 0.78

IFFE + one TFC � 84.07 78.00 0.78

IFFE + two TFC � 84.60 77.39 0.79

IFFE + two TFC � 84.21 76.20 0.78

SCANSleepNet (ours) � 85.52 78.31 0.80

The symbol ‘�’ indicates which loss function is used in this method. The best and second-best results are
marked in red and blue, respectively

experiments on the Sleep-EDF Fpz-Cz channel. As shown
in Table 6, causal convolution is critical for capturing
causal relationships and long-range dependencies in tem-
poral signals. After replacing causal convolution with one-
dimensional convolution, the overall accuracy declined
to 84.56%, the Macro-F1 score decreased from 78.31%
to 77.02%, and the Cohen’s kappa score also dropped
from 0.80 to 0.79. The performance decline stems from
one-dimensional convolution’s inability to explicitly model
causal relationships in temporal data, limiting its capacity to
capture complex temporal dynamics.

6 Conclusion

We propose a sleep stage classification architecture termed
SCANSleepNet to categorize sleep stages using raw EEG
signals from a single channel. A multiscale atrous convolu-
tion (MSAC) block is designed to derive features from EEG
signals.Meanwhile, a Temporal FeatureCapture (TFC)mod-
ule is constructed to capture temporal correlation. Besides,
a weighted focus cross-entropy loss function is formulated
to manage class imbalance effectively and focus on difficult
samples. Experiment results prove that it achieves a good bal-
ance between classification accuracy and efficiency. Given
the fact that SCANSleepNet has demonstrated certain advan-
tages in the task of sleep stage classification, there is still
some room for improvement. First, the classification effect
of the N1 stage is significantly lower than that of other stages.
Second, the model structure of SCANSleepNet has not been
optimized for the rapidly changing features of the N1 stage.
Future work is expected on N1 sleep stage classification.

Table 6 Performance comparison between SCAN (Ours) and Trans-
form variants and One-dimensional convolution variants

Methods Acc.(%) MF1(%) k

SCAN(Ours) 85.52 78.31 0.80

Transform 75.70 67.00 0.66

One-dimensional convolution 84.56 77.02 0.79
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