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Abstract—The rapid advancement of deepfake technology has1

threatened the community’s sense of security, particularly in2

the context of face-based payment systems. Thus, deepfake3

detection has emerged as a critical issue demanding immediate4

attention. However, the generalization performance of existing5

detection models is limited as they are overly reliant on specific6

forged features while ignoring the common forged features. To7

address this problem, we introduce the Context-Aware Decou-8

pling Network (CADNet) for deepfake detection. Specifically, a9

Context Self-Calibration (CSC) module is constructed to guide10

the network to focus on local forged regions. It enlarges possible11

regions to increase the likelihood of forgery cues. Meanwhile, a12

Frequency Domain Decoupling (FDD) module is introduced to13

extract and fuse different frequency components. It realizes the14

collaborative representation optimization of global semantics and15

local details. The experimental results prove that the proposed16

model exhibits strong generalization capability across multiple17

standard datasets. It achieves average AUC values of 98.64% for18

in-domain evaluation and 75.52% for cross-dataset generaliza-19

tion.20

Index Terms—Deepfake detection, Facial payment, General-21

ization, Frequency domain decoupling, Context self-calibration.22

23

I. INTRODUCTION24

W Ith the rapid development of the internet and the25

flourishing digital economy, digital finance has become26

a pivotal driver of economic growth. In this context, it is27

increasingly vital to ensure secure transactions, particularly in28

facial payment systems. However, with the rapid development29

of Artificial Intelligence Generated Content (AIGC), the mis-30

use of forged facial images has significantly increased in facial31

recognition payment systems. As digital finance expands, the32

risks posed by fraudulent facial images in the financial sector33

have become increasingly acute. To address this challenge,34

the academic community has introduced deepfake detection35

methods and conducted systematic and extensive research on36

deepfake detection [1]–[3].37

Existing deepfake detection methods typically perform well38

when training and testing data are generated using the same39
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deepfake techniques [4]. However, in real-world applications, 40

testing data may be generated using unknown methods, and 41

thus, the generalization performance is degraded. To improve 42

the generalization performance of deepfake detection, some 43

researchers have made some attempts in the spatial and fre- 44

quency domains. Yan et al. [5] improved the generalization by 45

mining the common features in different forgery techniques. 46

Liu et al. [6] introduced a spatial-phase shallow learning 47

method to improve the generalization ability of forgery face 48

detection. Qian et al. [7] developed a frequency-based face 49

forgery detection network to enhance the generalization capa- 50

bility. Luo et al. [8] improves the generalization of forgery 51

detection systems by exploiting high-frequency features. Al- 52

though these methods aim to improve the generalization ability 53

of detection networks, their performance remains limited. 54

This is because deepfake detection methods overfit to specific 55

prominent regions of the deepfake images [9]. 56

To improve the generalization of the deepfake detection 57

model, we propose the CADNet for deepfake detection. The 58

CADNet mainly comprises two key modules, namely Context 59

Self-Calibration (CSC) and Frequency Domain Decoupling 60

(FDD). The CSC module retains the original input character- 61

istics and extracts local features. It also prompts the network 62

to explore more forged content by examining as many regions 63

as possible. Additionally, the FDD module extracts and fuses 64

the low-frequency and three high-frequency components. The 65

low-frequency component is used to capture the global pattern, 66

and the three directional high-frequency components are used 67

to retain detailed spatial information. In the process of high 68

and low frequency feature processing, the EffConv block is 69

designed to eliminate redundant feature representations. In 70

sum, the contributions of this work are three-fold: 71

• A CADNet model is proposed to enhance the generaliza- 72

tion and accuracy of the deepfake detection. 73

• A CSC module is introduced to guide the network to 74

focus on the forged regions and assess specific non- 75

critical regions effectively. 76

• An FDD module is developed to extract and fuse low- 77

frequency and high-frequency components to enhance 78

feature extraction. 79

The rest of the paper is structured as follows: Section II 80

presents the related work. Section III illustrates the proposed 81

method in detail. Section IV analyses the experimental results. 82

The paper is concluded in Section V. 83
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II. RELATED WORK84

A. Deepfake detection85

Deepfake is a generative technique that uses methods such86

as Generative Adversarial Network (GAN) and Diffusion87

model to realistically synthesize or manipulate facial images.88

In digital finance and other sensitive domains, the misuse of89

deepfake technology can lead to significant property dam-90

age [10]. Therefore, detecting fake facial images is essential91

to prevent fraudulent activities and mitigate potential risks.92

Various approaches have been proposed for deepfake detec-93

tion [11]–[16]. In the early stages, deepfake detection methods94

focus mainly on identifying abnormal features [17] or forged95

traces [18] in facial images to determine their authenticity.96

However, with the emergence of various new deepfake genera-97

tion models, these methods exhibit poor detection performance98

on advanced deepfake techniques, and these results in poor99

generalization performance.100

To enhance the generalization capability of deepfake de-101

tection methods, many deep learning techniques have been102

extensively adopted [19], benefiting from their strong feature103

modeling capabilities. Cao et al. [20] proposed an end-to-104

end reconstruction-classification learning framework, termed105

RECCE, to improve generalization in deepfake detection.106

It integrates multi-scale graph reasoning and reconstruction-107

guided attention mechanisms to detect forged images with108

unknown patterns. Ni et al. [21] proposed a consistent rep-109

resentation learning model to improve generalization in de-110

tecting unknown forgery patterns. It introduces a consistent111

representation learning framework that explicitly constrains112

feature consistency across different data augmentations using a113

cosine similarity loss. Dang et al. [22] introduced an attention-114

driven deepfake detection model to identify manipulated facial115

images and locate tampered facial regions. However, these116

methods tend to overly rely on specific regional features and117

ignore the common forged features. Thus, their generalization118

capabilities are limited. To this aim, we propose the CAD-119

Net through context-dependent insights and decoupled feature120

analysis.121

B. Global context attention122

The global context attention is widely used in deepfake de-123

tection for capturing global information efficiently. It bridges124

the gap between local and global features and enhances model125

adaptability and performance. Li et al. [23] proposed a long-126

distance attention mechanism that integrates global informa-127

tion to enhance the comprehensiveness of feature representa-128

tion. Wang et al. [24] introduced the multi-domain attention129

mapping learning mechanism to enhance the adaptability of130

the model to diverse deepfakes. Additionally, Das et al. [25]131

developed a gated context attention mechanism to filter and132

aggregate relevant contextual information from coarse feature133

maps. In this work, we build a Context Self-Calibration (CSC)134

module to guide the network to focus on the forged regions135

and assess specific non-critical regions.136

C. Frequency domain analysis 137

Spatial domain processing methods directly analyze the raw 138

pixels to detect forgery. They overlook frequency domain 139

anomalies generated during the forgery process. In contrast, 140

the frequency domain processing methods detect forgery 141

through spectral transformations. They focus on local fre- 142

quency domain features of the image, such as high-frequency 143

components like edges and textures, and low-frequency com- 144

ponents like smooth regions. Thus, the frequency domain 145

approaches are more suitable for capturing pixel-level artifacts 146

or frequency anomalies generated during the forgery process. 147

Wavelet transform is a common tool to capture features by 148

multi-resolution analysis in forgery detection. Wang et al. [26] 149

utilized wavelet transform to derive frequency-domain features 150

and improve the generalization of the deepfake detection 151

model across datasets. Gao et al. [27] employed the discrete 152

wavelet transform to enhance global high-frequency features 153

in complex forgery detection. Liu et al. [28] proposed a multi- 154

scale wavelet transformer architecture for deepfake detection. 155

Wolter et al. [29] proposed a wavelet packet-based approach 156

for deepfake detection. In this work, we propose a Fre- 157

quency Domain Decoupling module to decouple and integrate 158

low-frequency and high-frequency components. The proposed 159

CADNet enhances the model’s generalization capability. It 160

uses the integration of multi-level high-frequency features, 161

spatial features, and a frequency-guided attention mechanism. 162

III. PROPOSED MODEL 163

A. Overview 164

The schematic of the CADNet is shown in Fig. 1. The 165

image pair is processed by two independent encoders. A face 166

encoder extracts the initial face features, while a background 167

encoder extracts the initial background features. The CSC 168

module enhances the face and background features and derives 169

Ff and Fb (or Rf and Rb) by emphasizing local features 170

and more feature regions. Next, the initial specific features 171

and common features are obtained by separating the facial 172

features through convolutional layers. Subsequently, the initial 173

specific features and common features are enhanced using the 174

FDD module to derive Fs and Fc (Rs and Rc). The common 175

head is designed to assess the authenticity of the images 176

and enhance generalization to unseen forgery techniques. The 177

specific head is a multi-class classification that distinguishes 178

between various forgery techniques. 179

In addition, the reconstruction module is divided into the 180

self-reconstruction part and the cross-reconstruction part. The 181

self-reconstruction part is to ensure that the decoupled fea- 182

tures are consistent with the original image, and the cross- 183

reconstruction part is to verify the independence of the decou- 184

pled features. The background and face features are processed 185

using three Adaptive Instance Normalization (AdaIN) lay- 186

ers [30], as well as four convolutional and four upsampling op- 187

erations. Then, the reassembled features are processed by the 188

decoder to reconstruct facial images. The reconstructed images 189

are used for reconstruction loss calculation. The reconstruction 190

loss function facilitates enhanced feature decoupling between 191

background and facial features through image reconstruction. 192
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Fig. 1. The overview framework of the CADNet model for deepfake detection.

B. Context self-calibration module193

To enhance the model’s ability to capture local key regions194

and global contextual dependencies in facial images, a Context195

Self-Calibration (CSC) module is built. The schematic of the196

CSC module is shown in Fig. 2.197

Input

BN MLP

Output

Convolution

BN Multilayer PerceptronBatch Normalization MLP

Pooling

Pooling

Fig. 2. The overview of the CSC module. H refers to horizontal pooling. V
refers to vertical pooling.

Specifically, the residual feature information is compressed198

along the vertical axis using horizontal pooling. It extracts199

global information from each column and generates horizon-200

tal global context features. Similarly, feature information is201

compressed along the horizontal axis using vertical pooling.202

Subsequently, the horizontal and vertical pooling results are203

combined to generate a fused global context feature map. The204

fusion formula is represented as:205

R attention = HP (F )⊕ V P (F ), (1)

where F is the input feature. HP (F ) and V P (F ) denote the206

horizontal and vertical axial vector, respectively. ⊕ represents207

the broadcast addition operation.208

The map R attention is processed through a convolutional209

layer. Meanwhile, a 3 × 3 convolution is performed on the210

input feature F . Then, the results of these two operations are211

multiplied element-wise to generate F
′
. The feature F

′
can212

be described as:213

F
′
= Conv(R attention)⊗ Conv3×3(F ), (2)

where Conv3×3(·) is a 3 × 3 convolution. ⊗ represents214

the element-wise multiplication. After that, the feature F
′

is215

passed through Batch Normalization (BN) and a Multilayer 216

Perceptron (MLP) to obtain the global features. Finally, the 217

model adds the global features and the input features to 218

produce the final output. The process is formulated as: 219

Fcsc = MLP(BN(F
′
)) + F, (3)

where Fcsc is the output feature of the CSC module. MLP(·) 220

and BN(·) represent the multilayer perceptron and batch 221

normalization, respectively. 222

C. Frequency domain decoupling module 223

The schematic of the FDD module is shown in Fig. 3. 224

Within the FDD module, the feature map undergoes decompo- 225

sition through the Haar wavelet transform. This process pro- 226

duces a low-frequency component along with high-frequency 227

components in horizontal, vertical, and diagonal orientations. 228

The Haar wavelet transform formula is expressed as: 229

lr(i, j) =
Ff (i, 2j − 1) + Ff (i, 2j)

2
,

dr(i, j) = Ff (2i− 1, j)− Ff (2i, j),
(4)

where i and j are the 2D coordinate indices, and they are 230

employed to locate the spatial position of the feature explicitly. 231

lr(i, j) is a low-frequency component. Ff is the input feature. 232

dr(i, j) is a diagonal high-frequency component. 233

Then, the low-frequency feature and three high-frequency 234

features can be obtained as: 235

l(i, j) =
lr(2i− 1, j) + lr(2i, j)

2
,

hL(i, j) = lr(2i− 1, j)− lr(2i, j),

hV (i, j) = dr(2i− 1, j) + dr(2i, j),

hD(i, j) = dr(2i− 1, j)− dr(2i, j),

(5)

where l(i, j) denotes the initial low frequency component. 236

hL(i, j) and hV (i, j) represent the horizontal high-frequency 237

and vertical high-frequency components, respectively. hD(i, j) 238
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Fig. 3. The overview of the FDD module. l and h refer to the low-frequency and high-frequency features. hL and hV denote the horizontal high-frequency
and vertical high-frequency features, respectively. hD refers to the diagonal high-frequency feature.

is the diagonal high-frequency component. The three high-239

frequency features are concatenated to generate the ini-240

tial high-frequency feature. Subsequently, the initial high-241

frequency features are refined through convolution normaliza-242

tion and an EffConv block to produce the final high-frequency243

features. The initial low-frequency features are processed244

through a convolutional operation followed by an EffConv245

block to obtain the final low-frequency representations.246

The final low-frequency and high-frequency components are247

formulated as:248

L = EffConv(BN(Conv1×1(l))),
H = EffConv(BN(Conv1×1(Concat(hL, hV , hD)))),

(6)
where L and H are the final low-frequency component and249

high-frequency component, respectively. EffConv(·) denotes250

the efficient convolution. BN(·) represents the batch nor-251

malization. Conv1×1(·) is the convolution kernel with a size252

of 1 × 1. Concat(·) represents the concatenation operation253

applied to three high-frequency features.254

By employing the FDD module, the proposed method main-255

tains high-frequency detail representation while simultane-256

ously integrating low-frequency global structural information.257

D. Loss function258

The loss function is a combination of classification loss,259

contrastive regularization loss, and reconstruction loss.260

1) Classification loss: The classification loss consists of261

two components: the binary classification loss and the Specific262

forgery classification loss. Binary classification loss (Lc
ce): It263

supervises the model to learn common forgery features across264

different methods. The loss Lc
ce is denoted as:265

Lc
ce = Lce (Hc (Ac) , yi) , (7)

where Hc(·) is the head for common forgery features. Ac is the266

common fingerprint, and yi ∈ {fake, real}. Specific forgery267

classification loss (Ls
ce): It is employed to identify the specific268

forgery method. The loss is formulated as:269

Ls
ce = Lce (Hs (As) , y

′
i) , (8)

where Hs(·) is the head for specific forgery features. As is270

the specific fingerprint, and y′i ∈ {fake,GAN1,GAN2, . . . }.271

2) Contrastive regularization loss: The contrastive regular- 272

ization loss Lcon is formulated as: 273

Lcon = max (∥xA − xP ∥2 − ∥xA − xN∥2 + α, 0) , (9)

where α is a margin hyperparameter. xA is the anchor. xN is 274

the dissimilar counterpart. xP is the dissimilar counterpart. It 275

ensures a generalizable representation by distinguishing real 276

and fake images and method-specific forgeries. 277

3) Reconstruction loss: The reconstruction loss includes 278

self-reconstruction loss and cross-reconstruction loss. The self- 279

reconstruction loss ensures that the reconstructed image aligns 280

with the original by combining the background and face from 281

the same source. The cross-reconstruction loss verifies feature 282

independence by combining a real background with a forged 283

face and vice versa. The final reconstruction loss is expressed 284

as: 285

Ls
rec = ∥F −D(Fb + Fs+c)∥1 + ∥R−D(Rb +Rs+c)∥1 ,

Lc
rec = ∥F −D(Fb +Rs+c)∥1 + ∥R−D(Rb +Rs+c)∥1 ,

Lrec = Ls
rec + Lc

rec,
(10)

where F and R represent the fake and real images. D(Fb + 286

Fs+c) and D(Rb + Rs+c) represent the self-reconstructed 287

images processed by the background decoder and the face 288

decoder. D(Fb+Rs+c) and D(Rb+Fs+c) represent the cross- 289

reconstructed images processed by the background decoder 290

and the face decoder. Ls
rec, Lc

rec, and Lrec correspond to 291

self-reconstruction loss, cross-reconstruction loss, and final 292

reconstruction loss. 293

4) Final loss: The final loss is to balance classification, 294

contrastive, and reconstruction objectives to improve feature 295

disentanglement and detection accuracy. It is obtained as: 296

L = Lc
ce + λ1Ls

ce + λ2Lcon + λ3Lrec, (11)

where λ1, λ2, and λ3 are weights for specific loss components 297

and their values strictly follow the configuration established in 298

the baseline Uncovering Common Features (UCF) [5]. 299

IV. EXPERIMENTAL RESULTS AND ANALYSIS 300

A. Datasets 301

Experiments are conducted on five deepfake datasets, 302

namely FaceForensics++ (FF++) [31], Celeb-DF-v1 [32], 303

Celeb-DF-v2 [32], DeepFake Detection Challenge Pre- 304

view (DFDCP) [33] and FaceShifter [34]. The pre-processing 305

for these datasets follows the criteria in work [35]. 306
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TABLE I
COMPARATIVE RESULTS ON INTRA-DATASET VALIDATION. THE TRAINING

DATASET IS THE FF++ DATASET, AND THE METRIC IS AUC. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD.

Methods FF++ DF F2F FS NT Avg.

Meso4 [36] 0.6077 0.6771 0.6170 0.5946 0.5701 0.6133
MesoIncep [36] 0.7583 0.8542 0.8087 0.7421 0.6517 0.7630
CNN-Aug [37] 0.8493 0.9048 0.8788 0.9026 0.7313 0.8534
Xception [31] 0.9637 0.9799 0.9785 0.9833 0.9385 0.9688
EfficientB4 [38] 0.9567 0.9757 0.9758 0.9797 0.9308 0.9637
Capsule [39] 0.8421 0.8669 0.8634 0.8734 0.7804 0.8452
FWA [40] 0.8765 0.9210 0.9000 0.8843 0.8120 0.8788
X-ray [41] 0.9592 0.9794 0.9872 0.9871 0.9290 0.9684
FFD [22] 0.9624 0.9803 0.9784 0.9853 0.9306 0.9674
CORE [21] 0.9638 0.9787 0.9803 0.9823 0.9339 0.9678
Recce [20] 0.9621 0.9797 0.9779 0.9785 0.9357 0.9668
UCF [5] 0.9705 0.9883 0.9840 0.9896 0.9441 0.9753
F3Net [7] 0.9635 0.9793 0.9796 0.9844 0.9354 0.9684
SPSL [6] 0.9610 0.9781 0.9754 0.9829 0.9299 0.9655
SRM [8] 0.9576 0.9733 0.9696 0.9740 0.9295 0.9609

CADNet (Ours) 0.9854 0.9940 0.9929 0.9933 0.9663 0.9864

The FF++ dataset is a comprehensive dataset for training307

and evaluating deep learning models in facial manipulation308

detection. With over 500,000 forged images, it surpasses sim-309

ilar datasets and aids in developing robust detection models.310

The dataset includes four major forgery techniques: Deep-311

Fakes (DF), Face2Face (F2F), FaceSwap (FS), and Neural-312

Textures (NT), which reflect the diverse and advanced trends313

in facial forgery technology.314

The Celeb-DF-v1 dataset is a foundational deepfake dataset315

designed to advance research in detecting manipulated media316

content. It contains 795 real videos featuring 59 celebrity317

subjects and 5,639 high-quality deepfake videos. The dataset318

incorporates early deepfake generation techniques, such as319

neural network-driven facial synthesis and blending.320

The Celeb-DF-v2 dataset does not contain artifacts like321

unnatural lip movements and geometric distortions. It provides322

high-resolution videos with an equal mix of real and fake323

content generated using advanced techniques, which increases324

the challenge for detection models. As a benchmark dataset,325

it plays a key role in advancing deepfake detection methods.326

The DFDCP dataset provides high-quality real and forged327

videos that use diverse facial manipulation techniques. It em-328

phasizes realistic scenarios with variations in lighting, angles,329

and resolutions. This makes it ideal for training and evaluating330

detection models and supports the development of robust331

deepfake detection systems.332

The FaceShifter dataset is an advanced face-swapping333

dataset containing highly realistic facial forgeries with minimal334

artifacts. Its two-stage architecture preserves facial identity335

and ensures consistency in lighting and background. Using336

a feature-based generator and refinement network, it delivers337

seamless results and sets a new benchmark in deepfake detec-338

tion research.339

B. Evaluation metrics340

The proposed network is evaluated using four stan-341

dard binary classification metrics, namely Area Under the342

Curve (AUC), Accuracy (ACC), Average Precision (AP), and343

Equal Error Rate (EER). The AUC quantifies the ability of the344

Input

Fig. 4. Visualizations of extracted intermediate feature maps.

model to differentiate classes and indicates the probability of 345

correct classification. The ACC represents the model’s overall 346

performance in the sample and measures the proportion of 347

samples correctly classified by the model. The AP evaluates 348

the balance between the accuracy and the recall rate of 349

the model at different thresholds. The EER represents the 350

threshold at which the false acceptance rate and false rejection 351

rate converge. 352

C. Implementation details 353

In this work, we used the Adam [42] optimization algorithm 354

with a learning rate of 2×10−4. The batch size was set to 32. 355

For the Xception [31] detector, we took their official model 356

and initialized the parameters with pre-training on ImageNet. 357

The margin α in Eq. (9) is set to 3. In the final loss function 358

in Eq. (11), the λ1, λ2, and λ3 were set as 0.1, 0.05, and 0.3. 359

All experiments were implemented in PyTorch [43] with an 360

NVIDIA GeForce RTX 3090 Ti GPU. 361

D. Experimental results 362

To maintain strict experimental controls, neither data aug- 363

mentation techniques nor external training data were incorpo- 364

rated. The model was exclusively trained on the FF++ dataset 365

without additional synthetic or manipulated samples. 366

1) Intra-dataset validation: To conduct intra-testing, all 367

methods are trained on the FF++ dataset and evaluated on 368

both the FF++ dataset and its subsets. The comparative results 369

between different methods are presented in Table I. Compared 370

to other methods, the proposed method achieves superior 371

performance on the FF++ dataset and its subsets. Additionally, 372

when compared to the baseline method, UCF, the CADNet 373

improves the average AUC by 1.11%. Meanwhile, the feature 374

extraction processes of the proposed CADNet on the FF++ 375

dataset are shown in Fig. 4. It shows that the proposed 376

CADNet has the ability to capture the common features of 377

fake images. 378
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Fig. 6. Attention visualizations of the proposed CADNet and the baseline (UCF). Compared with the baseline, the proposed CADNet focuses on more facial
regions.

2) Cross-dataset validation: To evaluate the cross-domain379

generalization capability of the proposed model, the cross-380

dataset validation was performed in four unseen out-of-381

distribution datasets. The framework was trained exclusively382

on the FF++ dataset and subsequently evaluated across383

four distinct deepfake datasets: Celeb-DF-v1, Celeb-DF-v2,384

DFDCP, and FaceShifter. The evaluation results are presented385

in Table II. Compared to other methods, the proposed model386

performs best on Celeb-DF-v2, DFDCP, and FaceShifter. It387

achieves the second-best result on Celeb-DF-v1, only behind388

SPSL [6].389

3) Validation with baseline: To demonstrate the superiority390

of the proposed method, we compared the proposed CADNet391

with the baseline method, UCF [5]. Comparative results are392

presented in Table III. The CADNet outperforms the baseline393

models across all metrics on the FF++, DF, F2F, and FS394

datasets. On the NT dataset, CADNet surpasses the baseline395

in terms of AP and EER.396

The subjective results of the CADNet are shown in Fig. 5. It397

demonstrates the ability of the proposed method to determine398

the authenticity of images across multiple datasets. Mean-399

while, the visualization of the attention map is presented in400

Fig. 6. Compared to the UCF, the proposed network can focus401

on a larger range of facial regions in various datasets. Thus,402

the proposed CADNet is more capable of detecting forgery403

traces than the UCF model.404

TABLE II
COMPARATIVE RESULTS ON CROSS-DATASET VALIDATION. THESE

MODELS ARE TRAINED ON THE FF++ DATASET AND TESTED ON THE
CELEB-DF-V1, CELEB-DF-V2, DFDCP, AND FACESHIFTER,

RESPECTIVELY. THE EVALUATION METRIC IS AUC AND AVERAGE AUC
(AVG.). THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

Methods Celeb-DF-v1 Celeb-DF-v2 DFDCP FaceShifter Avg.

Meso4 [36] 0.7358 0.6091 0.5994 0.5660 0.6276
MesoIncep [36] 0.7366 0.6966 0.7561 0.6438 0.7083
CNN-Aug [37] 0.7420 0.7027 0.6170 0.5985 0.6651
Xception [31] 0.7794 0.7365 0.7374 0.6249 0.7196
EfficientB4 [38] 0.7909 0.7487 0.7283 0.6162 0.7210
Capsule [39] 0.7909 0.7472 0.6568 0.6465 0.7104
FWA [40] 0.7897 0.6680 0.6375 0.5551 0.6626
X-ray [41] 0.7093 0.6786 0.6942 0.6553 0.6844
FFD [22] 0.7840 0.7435 0.7426 0.6056 0.7189
CORE [21] 0.7798 0.7428 0.7341 0.6032 0.7150
Recce [20] 0.7677 0.7319 0.7419 0.6095 0.7128
UCF [5] 0.7696 0.7391 0.7594 0.6462 0.7286
F3Net [7] 0.7769 0.7352 0.7354 0.5914 0.7097
SPSL [6] 0.8150 0.7650 0.7408 0.6437 0.7411
SRM [8] 0.7926 0.7552 0.7408 0.6014 0.7225

CADNet (Ours) 0.7986 0.7655 0.7683 0.6882 0.7552

E. Analysis of robustness 405

Considering the ubiquity of image processing, we investi- 406

gate the performance under several perturbations, including 407

image compression, Gaussian blur, CLAHE contrast, satu- 408

ration, and pixelation. The training and testing dataset is 409

the FF++ dataset. In the details of robustness analysis, we 410

introduce the five standardized perturbation methods. Image 411

compression: The input images were subjected to lossy 412

compression at a quality factor of 70%. Gaussian blur: A 413
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TABLE III
COMPARATIVE RESULTS OF THE PROPOSED CADNET AND THE BASELINE (UCF). THE TRAINING DATASET IS THE FF++ DATASET, AND THE METRICS

ARE ACC, AP, AUC, AND EER. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD.

FF++ DF F2F FS NT

ACC↑ AP↑ AUC↑ EER↓ ACC↑ AP↑ AUC↑ EER↓ ACC↑ AP↑ AUC↑ EER↓ ACC↑ AP↑ AUC↑ EER↓ ACC↑ AP↑ AUC↑ EER↓

Baseline 0.9445 0.9960 0.9705 0.0589 0.9555 0.9943 0.9883 0.0355 0.9445 0.9924 0.9840 0.0388 0.9049 0.9698 0.9896 0.0922 0.9049 0.9698 0.9441 0.0922
Ours 0.9479 0.9965 0.9854 0.0576 0.9588 0.9951 0.9940 0.0330 0.9600 0.9948 0.9929 0.0299 0.9702 0.9948 0.9933 0.0909 0.8798 0.9730 0.9663 0.0909

TABLE IV
ROBUSTNESS EVALUATION ON FF++ DATASET. THE BEST RESULTS ARE

HIGHLIGHTED IN BOLD.

Methods Compress Blur Contrast Saturate Pixelate

Xception [31] 0.5956 0.6176 0.6110 0.5992 0.5996
CORE [21] 0.5508 0.5136 0.5689 0.5365 0.5372
Recce [20] 0.5280 0.5033 0.5472 0.5354 0.5361
UCF [5] 0.5925 0.6247 0.6187 0.5931 0.6055
SPSL [6] 0.5969 0.6280 0.6334 0.6288 0.6284
SRM [8] 0.5583 0.5487 0.5840 0.5672 0.5691
CADNet (Ours) 0.6335 0.6436 0.6673 0.6533 0.6552

15× 15 Gaussian kernel with standard deviation (σ=1.1) was414

applied for image blurring. CLAHE contrast: Adaptive415

histogram equalization was performed using an 8×8 grid416

pattern with a clip limit threshold set to 2.0 for local contrast417

restriction. Saturation: In the HSV color space, the satu-418

ration channel was amplified by a factor of 1.1. Pixelation:419

Images were first downsampled to 256 × 256 resolution and420

subsequently upsampled to their original dimensions using421

interpolation. Comparative results are shown in Table IV.422

The proposed CADNet achieves the best results in image423

compression, Gaussian blur, CLAHE contrast, saturation, and424

pixelation operations. It shows that CADNet outperforms other425

SOTA models when it is subjected to the aforementioned426

disturbances.427

F. Ablation study428

To assess the effectiveness of the core components, ablation429

experiments were conducted on the FF++ dataset. The results430

are shown in Table V. In ablation studies, the Baseline is the431

UCF. It proves that when the CSC and FDD modules are432

equipped individually, the performance in AUC, ACC, AP,433

and EER can be improved steadily. When the two modules434

are equipped simultaneously, AUC, ACC, and AP metrics are435

further enhanced. The value of EER is slightly higher than the436

“Baseline+CSC” but it is better than the Baseline.437

TABLE V
THE ABLATION STUDIES OF THE PROPOSED CADNET. THE AUC, ACC,
AP, AND EER ARE USED AS EVALUATION METRICS. THE BEST RESULTS

ARE HIGHLIGHTED IN BOLD.

Methods AUC↑ ACC↑ AP↑ EER↓

Baseline 0.9831 0.9445 0.9960 0.0589
Baseline + CSC 0.9842 0.9455 0.9961 0.0547
Baseline + FDD 0.9841 0.9460 0.9962 0.0587
Baseline + CSC + FDD 0.9854 0.9479 0.9965 0.0576

V. CONCLUSION 438

In this work, the CADNet is proposed to enhance the 439

generalization ability of deepfake detection in the facial pay- 440

ment system. In the proposed CADNet, a CSC module is 441

designed to focus on local features while emphasizing non- 442

local facial regions. It can enhance the ability of the network 443

to detect general forgery traces. Meanwhile, an FDD module 444

is designed to decouple high-frequency and low-frequency 445

features for the exploration of frequency domain features. It 446

enables the network to focus on features that are overlooked 447

in the spatial domain. Experimental results demonstrate that 448

the proposed CADNet maintains strong generalization capa- 449

bility. It enhances resistance to deepfake technology in finan- 450

cial transactions while mitigating security threats posed by 451

such attacks. While CADNet excels at image-level detection, 452

its current single-frame analysis paradigm cannot inherently 453

identify temporal artifacts in video forgeries. Future work 454

will extend this framework to video deepfake detection by 455

analyzing inconsistencies between frames. 456
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