
Frequency-Spatial Feature Fusion
Network for Infrared and Visible Image

Fusion

Wenhao Song1, Mingliang Gao1(B), Qilei Li2, Gwanggil Jeon3,
and David Camacho4(B)

1 School of Electrical and Electronic Engineering, Shandong University of
Technology, Zibo 255000, China

sdut songwenhao@163.com, mlgao@sdut.edu.cn
2 School of Electronic Engineering and Computer Science, Queen Mary University of

London, London E1 4NS, United Kingdom
q.li@qmul.ac.uk

3 Department of Embedded Systems Engineering, Incheon National University,
Incheon 22012, South Korea

gjeon@inu.ac.kr
4 Computer Systems Engineering Department, Universidad Politécnica de Madrid
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Abstract. Infrared and visible image fusion seeks to retain comple-
mentary information from source images and generate a comprehen-
sive image. Most fusion methods ignore the detailed information in the
frequency domain. To address this problem, we propose a Frequency-
spatial Feature Fusion Network (F3Net) in this work. The F3Net consists
of three modules, namely Frequency-Spatial Feature Extraction Mod-
ule (FSFEM), Feature Fusion Module (FFM), and Image Reconstruc-
tion Module (IRM). First, the FSFEM is built to extract complementary
information from the source image separately in the frequency and spatial
domains. Then, the FMM is introduced to fuse the features of the fre-
quency and spatial domains. Finally, the fused image is reconstructed by
IRM. Comprehensive experiments demonstrate that the F3Net outper-
forms the state-of-the-art (SOTA) methods subjectively and objectively.

Keywords: Image fusion · Frequency domain feature · Feature
fusion · Deep learning

1 Introduction

Image fusion aims to integrate information from source images of the same scene,
and produces a fused image with enhanced quality and details [6]. Image fusion
has various applications in medical imaging [5], remote sensing [21], surveil-
lance [15], and night vision [16]. In the realm of image fusion, infrared and
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visible image fusion (IVIF) hold significance. This method combines thermal
information from infrared (IR) images with texture information from visi-
ble (VIS) images and yields a more comprehensive and informative result [17].

Over the past few years, numerous methods for fusing infrared and visi-
ble images have emerged. These approaches can be broadly divided into two
main groups, namely traditional methods and deep learning-based methods.
Traditional methods usually operate in a specific transform domain, such as
wavelet [27], curvelet [28], or contourlet [4], and fuse the features of the source
images according to some predefined rules or criteria [13]. Nevertheless, the tradi-
tional method relies on complicated transforms or representations to improve the
fusion quality, which increases the computational cost and time. Consequently,
these traditional methods may not be well-suited for real-time applications [9].

To address this problem, deep learning-based methods have been developed
and they can be divided into three categories based on different network archi-
tectures, namely autoencoder (AE)-based method [31], convolutional neural net-
work (CNN)-based method [19], and generative adversarial network (GAN)-
based method [3]. Given convolutional neural networks’ potent feature extraction
capabilities, deep learning methods can effectively extract rich and complemen-
tary information from source images. Nevertheless, many existing deep learning
methods predominantly concentrate on spatial domain features and overlook the
frequency domain features. This is because convolutional neural networks, com-
monly used in these methods, are particularly effective at extracting rich spatial
features that are more directly related to visual aspects like texture and object
details. Consequently, the rich edge detail and other high-frequency information
in the frequency domain might be underutilized.

We propose a frequency-spatial feature fusion network (F3Net) for IVIF to
tackle these challenges. The main contributions of this work are as follows,

– We design a frequency-spatial feature extraction module (FSFEM) to extract
frequency and spatial domain features from the source images.

– We propose a feature fusion module (FFM) to fuse the frequency domain and
spatial domain features, thereby obtaining more comprehensive and represen-
tative fusion features.

– Comprehensive experiments demonstrate that the proposed method can
achieve superior performance over state-of-the-art (SOTA) methods, objec-
tive and subjective.

2 Proposed Method

2.1 Overview

The overall architecture of F3Net is illustrated in Fig. 1. It aims to integrate the
thermal information from the IR image and the texture information from the VIS
image. It includes the frequency-spatial feature extraction module (FSFEM), the
Feature Fusion Module (FFM), and the Image Reconstruction Module (IRM).
First, FSFEM extracts features from both the frequency and spatial domains of
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the source images. Subsequently, the FFM combines these frequency and spatial
features. Finally, the IRM reconstructs the fused image using four convolutional
layers.

Fig. 1. The overall framework of the proposed method.

2.2 Network Architecture

Frequency-Spatial Feature Extraction Module The Frequency-Spatial
Feature Extraction Module (FSFEM) is specifically designed to fuse features
from both the frequency domain and spatial domain of the source images. It
consists of three components, namely Residual block (Resblock), the Fcanet [14]-
based Frequency domain Feature Extraction Unit (FFEU), and the CBAM [23]-
based Spatial domain Feature Enhancement Unit (SFEU). The Residual Block
(Resblock) serves as a fundamental component of FSFEM. It consists of two
convolutional layers with a ReLU activation function and a skip connection.
The Resblock is crucial in preserving low-level information from the source
images and enhancing feature representation. The FFEU is designed to extract
frequency-domain features from the source images. It captures global frequency
information and enhances edge and texture details, contributing to a more com-
prehensive representation. The SFEU focuses on enhancing the spatial domain
features of the source images. It dynamically adjusts the spatial and channel-wise
importance of input features, highlighting salient regions.

Feature Fusion Module The feature fusion module (FFM) is designed to fuse
the frequency domain and spatial domain features. It consists of a max pooling
layer, two convolutional layers with 7× 7 and 1× 1 kernels, a sigmoid activation
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function, an element-wise summation operation, and an element-wise multipli-
cation operation. The framework of FFM is illustrated in Fig. 2. The FFM
initiates the process by applying max pooling on the spatial domain features.
Subsequently, it utilizes a 7 × 7 convolution layer to reduce dimensionality and
increase the receptive field of these features. Then, it integrates frequency domain
features with spatial domain features, determining feature map weights through
a Sigmoid activation function. Detailed information is enhanced by element-wise
multiplication of feature map weights with frequency domain features, and orig-
inal spatial domain information is supplemented through element-wise addition.
Finally, it employs a channel attention mechanism to emphasize critical channel
information.

Fig. 2. Architecture of the Feature fusion module (FFM).

Image Reconstruction Module The IRM is responsible for reconstructing
the fused image from the integrated features obtained from the FFM. As shown
in Fig. 1, IRM employs a sequence of four convolutional layers to perform the
image reconstruction. The IRM is responsible for reconstructing the fused image
from the integrated features obtained from the FFM. This module employs a
sequence of four convolutional layers to perform the image reconstruction. Each
layer applies 3 × 3 convolutional operations to transform the fused feature maps
into higher resolution. Each convolutional layer employs ReLU activation func-
tions to introduce non-linearity into the model, enabling it to learn more complex
patterns. The final layer of the IRM might use a Tanh activation function to nor-
malize the output pixels to the appropriate range. The primary purpose of the
IRM is to reconstruct a coherent and visually enhanced output image using the
feature maps that represent both frequency and spatial information of the source
images, as processed and combined by the FSFEM and FFM.

2.3 Loss Function

To enhance the visual quality of the fused image, we develop a loss function
comprising three distinct components, namely pixel loss Lpixel, gradient loss
Lgradient, and structural loss Lssim. The total loss is expressed as,

Ltotal = λ1Lpixel + λ2Lgradient + λ3Lssim, (1)

where λ1, λ2, and λ3 are the weights of the respective terms.
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The pixel loss quantifies the pixel-wise discrepancy between the fused image
and the source images. It is presented as,

Lpixel =
1

HW
(‖If − Iir‖2F + ‖If − Ivis‖2F ), (2)

where H and W are the height and width of the image, respectively. If is the
fused image, Iir is the infrared image, and Ivis is the visible image. ‖·‖F denotes
the Frobenius norm of the matrix.

The gradient loss captures the gradient difference between the fused image
and the source images. It is calculated as:

Lgradient = ‖∇If − max {∇Iir,∇Ivis} ‖2, (3)

where ‖ · ‖2 represents the �2-norm of the matrix. ∇ is the gradient operation,
and max{, } denotes maximum operator.

The structural loss evaluates the structural similarity between the fused and
source images. It is defined as,

Lssim = 1 − SSIM (If ,max {Iir, Ivis}) , (4)

where SSIM is the structural similarity index [22].

3 Experimental Results and Analysis

3.1 Datasets and Experiment Setup

In this study, we employed the MSRS [20] dataset to assess the performance of
the proposed model. The MSRS dataset comprises 1444 pairs of source images
captured in diverse scenarios. The training set consists of 1083 pairs of images,
while the test set comprises 361 pairs of images.

The learning rate of F3Net was initially set to 0.001. The Adam is adopted
to optimize the model and set the batch size to 4. For the loss function, the
hyperparameters λ1, λ2, and λ3 were set to 1, 100, and 10, respectively. In this
section, we compare the fusion results with the nine SOTA methods. These meth-
ods include CSF [26], CUFD [24], Densefuse [7], DIDFuse [32], FusionGAN [12],
IFCNN [29], NestFuse [8], SuperFusion [18], and U2Fusion [25].

3.2 Comparison with SOTA Methods

Subjective Evaluation The subjective comparison is crucial for applications
where human perception. Observers compare the fused images produced by dif-
ferent methods to assess clarity, detail retention, and overall visual appeal. When
assessing images subjectively, observers anticipate that the fused image incor-
porates the optimal attributes of both IR and visible VIS images. Ideally, the
fused image should accentuate critical thermal information from the IR image,
while preserving the high-resolution detail from the VIS image. The results of
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the subjective comparison are shown in Fig. 3. It shows that the F3Net can effec-
tively preserve the salient information of the IR image and the detailed texture
of the VIS image. Compared with the competitors, the proposed method excels
in retaining more details and salient information from the source images. Addi-
tionally, it avoids artifacts and distortions in some methods like CSF, CUFD,
DIDFuse, and FusionGAN.

Fig. 3. Subjective results of the proposed F3Net and the competitors.
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Objective Evaluation To evaluate objective performance, we use four metrics:
entropy (EN), mutual information (MI), visual information fidelity (VIF), and
Qabf. EN quantifies the information content in the fused image, MI gauges the
preservation of information from source images to the fused image, VIF evaluates
the perceptual quality of the fused image, and Qabf assesses fusion quality based
on spatial and spectral information. Higher values for these metrics indicate
superior performance.

The results of the objective comparison are presented in Table 1. F3Net
outperforms state-of-the-art (SOTA) methods across all four metrics, confirm-
ing its superior performance. Specifically, F3Net attains the highest score in
EN, indicating optimal retention of information content within the fused image.
Moreover, its leading score in MI suggests that F3Net preserves information
from the source images most effectively. F3Net also ranks first in VIF, signifying
its superior perceptual quality. Additionally, achieving the highest score in Qabf
underscores the excellent fusion quality of the F3Net, considering both spatial
and spectral information. The proposed method effectively combines the com-
plementary information from the source images to produce a high-quality fused
image enriched with details.

Table 1. Objective evaluation of the proposed F3Net and the nine competitors in EN,
MI, VIF, and Qabf metrics. (The best results are marked in bold)

Method EN MI VIF Qabf

CSF [26] 5.836 2.344 0.666 0.368

CUFD [24] 6.056 2.989 0.644 0.433

Densefuse [7] 6.217 2.642 0.773 0.485

DIDFuse [32] 5.303 2.536 0.487 0.260

FusionGAN [12] 5.440 1.853 0.500 0.139

IFCNN [29] 5.975 1.857 0.712 0.519

NestFuse [8] 6.501 3.573 0.926 0.627

SuperFusion [18] 6.587 4.216 0.960 0.631

U2Fusion [25] 5.561 2.246 0.422 0.419

Ours 6.655 4.952 0.998 0.669

3.3 Computational Complexity Analysis

To verify the adaptability of deep learning-based methods compared to tradi-
tional methods in practical applications, we conducted a computational efficiency
experiment on the MSRS dataset. We compare the computational efficiency of
the proposed method with six traditional image fusion methods, namely ADF [1],
CNN [10], FPDE [2], GFCE [33], GTF [11], and IFEVIP [30].
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The unit fusion time of the proposed method and six traditional methods
on the MSRS dataset are shown in Table 2. It can be seen that the proposed
method has a significant time efficiency advantage over traditional methods.

Table 2. Computational efficiency of F3Net with the compared fusion methods.

Methods ADF [1] CNN [10] FPDE [2] GFCE [33] GTF [11] IFEVIP [30] Ours

Time (s) 0.61 25.52 1.11 0.93 2.88 0.25 0.11

4 Conclusion

This work introduces a Frequency-spatial Feature Fusion Network (F3Net) for
infrared and visible image fusion. The proposed model can effectively extract and
fuse frequency and spatial domain features from the source images. It consists of
three modules, namely Frequency-spatial Feature Extraction Module (FSFEM),
Feature Fusion Module (FFM), and Image Reconstruction Module (IRM). The
FSFEM is designed to extract the frequency domain and spatial domain features
from source images. FFM is used to fuse frequency domain and spatial domain
features adaptively. Experimental results demonstrate that the proposed method
can achieve superior performance over the existing SOTA methods, both sub-
jectively and objectively.
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