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Optimizing Nighttime Infrared and Visible Image
Fusion for Long-haul Tactile Internet

Wenhao Song™, Mingliang Gao
Xiangyu Guo

Abstract—In the domain of infrared and visible image fusion,
the majority of existing methods are designed for infrared and
visible images with normal illumination conditions. However,
these methods may not effectively address the challenges
presented by long-haul transmission scenarios in the Tactile
Internet. To meet the requirements of nighttime infrared and visi-
ble image fusion in long-haul network architectures for the tactile
internet, an illumination component adjusting network (ICANet)
is built. Firstly, an illumination adjustment denoising subnet-
work (IADSubNet) is designed to enhance the illumination
component of nighttime visible images and simultaneously elimi-
nate noise. Secondly, a local-global perception fusion subnetwork
(LGPFSubNet) is built to dynamically extract and fuse both
global and local information of the source images. Furthermore,
we leverage a mutual consistency loss to generate fused images
that are both visually appealing and rich in information. This
ensures the fidelity and consistency of the fused images during
long-distance transmission. Comprehensive experimental results
demonstrate that the proposed method outperforms state-of-
the-art (SOTA) methods quantitatively and qualitatively, and
prove that it has potential for high performance in the long-
haul transmission scenarios of tactile Internet. Meanwhile, the
fused images generated by the ICANet significantly enhance
object detection tasks. It is a critical aspect for many tactile
Internet applications dependent on real-time and accurate object
recognition.

Index Terms—Long-haul tactile Internet, deep learning, image
fusion, transformer, Retinex theory.

I. INTRODUCTION

HE RAPID advancement in infrared and visible imaging
Ttechnology has opened up significant opportunities for
applications across diverse fields. Infrared (IR) images excel
in detecting and capturing thermal radiation information from
targets, and they provide advantages in complex imaging
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conditions. In contrast, visible (VIS) images offer higher
resolution, richer color information, and more detailed mor-
phological features. The Tactile Internet is designed to enable
ultra-low-latency and highly reliable communication between
humans, machines, and the physical environment. It is focused
on establishing real-time interactions with minimal data trans-
mission delays, thereby extending the capabilities of the
conventional Internet. In addition, infrared and visible image
fusion enhances perception in the tactile Internet by integrat-
ing data from various sensors. Therefore, image fusion can
contribute to improved immersion and response speed in the
tactile Internet. However, the IR image is marred by issues
such as texture blurring and an absence of color information.
In addition, the VIS image often underperforms in low-light or
nocturnal environments due to inadequate illumination. Under
such circumstances, VIS images exhibit significant noise,
diminished contrast, and limited visibility of objects.

In recent years, research has increasingly focused on
advancing and refining infrared and visible image fusion (IVF)
methods [1], [2], [3]. These methods aim to address the
limitations of individual images and to enhance their utility
in downstream computer vision tasks, such as object detec-
tion [4], [5]. By integrating the information from both infrared
and visible images, fused images can provide a more com-
prehensive and accurate representation of target information.
The IVF technology has found wide-ranging applications in
fields such as military surveillance [6], object detection [7],
and vehicle navigation [8].

In the domain of IVF, numerous techniques have been
introduced, and they can be broadly classified into two primary
categories, namely traditional methods and deep learning-
based methods. Traditional methods [9], [10] typically treat
IVF as a problem of feature representation. Initially, specific
transforms are employed to extract crucial features from the
source images. Subsequently, fusion strategies are employed
to integrate these features. Finally, the fused image is recon-
structed by applying corresponding inverse transformations.
Nevertheless, with traditional methods continue to evolve,
the increasing complexity of their transformation techniques
makes real-time computation on modern computer systems
increasingly challenging [11].

Recently, the field of computer vision has undergone
significant advancements, largely driven by the swift develop-
ment of deep learning techniques. These advancements have
introduced more effective methods in IVF [12]. Deep learning-
based methods can be broadly classified into three main
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categories according to their model architectures, namely con-
volutional neural network (CNN) based methods [13], [14],
auto-encoder (AE) based methods [2], [15], and generative
adversarial network (GAN) based methods [16], [17]. CNN-
based methods utilize multiple parallel CNNs to extract
features from the source images. Subsequently, the extracted
features are fused to achieve end-to-end image fusion.
CNN-based approaches effectively capture complementary
information from both images and result in high-quality
fused images. AE-based methods utilize auto-encoders for
feature extraction and reconstruction. These methods then
employ dedicated fusion strategies to effectively combine
the extracted features for the final fused image. GAN-based
methods consist of two critical components, i.e., generator
network and discriminator network. The generator network
inputs both infrared and visible images and produces a fused
image as its output. Meanwhile, the discriminator network
plays a crucial role by providing feedback to the generator. The
function of the discriminator is to constrain the distribution of
the generated images, that resemble the characteristics of the
source images as closely as possible.

Although deep learning has shown remarkable success in
image fusion tasks, most existing approaches struggle in night-
time or low-light conditions. This necessitates the reliance
on infrared information in many image fusion frameworks
to counteract the deterioration of visual details in visible
images caused by poor lighting. However, this dependence
hinders their generalizability and negatively impacts overall
fusion performance. On the other hand, convolutional neural
networks are constrained by fixed-size local receptive fields
and weight sharing during feature extraction. This limitation
can lead to a loss of both texture details and global contextual
information in the fused images. Furthermore, the information
importance within the image can vary across different scenes.
Nevertheless, existing methods often rely on fixed weights
or simplistic weighting strategies to fuse the features, and
they fail to adequately address the problem of balancing
information from different modalities. This shortcoming can
ultimately lead to information loss and suboptimal fusion
outcomes.

To tackle these challenges, we propose a method that
decomposes the image fusion task under extreme condi-
tions into two sub-problems, namely image enhancement and
image fusion. The proposed method effectively integrates
both tasks while mitigating noise and artifacts, thereby ensur-
ing compatibility between image enhancement and image
fusion. Specifically, a Retinex-based illumination-adjustment
and denoising subnetwork (IADSubNet) is designed. This
subnetwork is used to decompose the mixed features at
the feature level, simultaneously generating enhanced source
images. Notably, IADSubNet possesses the ability to fine-
tune the weights. This capability allows for control of the
degree of enhancement for images under varying illumination
conditions. Subsequently, a local-global perceptive fusion
subnetwork (LGPFSubNet) is constructed. It comprises the
local feature extraction module, the global feature extraction
module, and the lightweight adaptive feature fusion mod-
ule. This subnetwork serves feature extraction, fusion, and
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reconstruction. The local feature extraction module employs
a CNN, while the global feature extraction module utilizes
a Transformer architecture with self-attention mechanisms
for comprehensive global feature extraction. Combining the
advantages of local and global feature extraction enables the
model to comprehend information from diverse dimensions
and levels. The lightweight adaptive feature fusion module
effectively fuses information from both images by dynam-
ically combining their feature representations. Furthermore,
the lightweight adaptive feature fusion module employs a
lightweight design to ensure computational efficiency and real-
time performance. We further introduced mutual consistency
loss in both TADSubNet and LGPFSubNet. This loss func-
tion ensures that the generated images through the proposed
method exhibit smoother variations and consistent structures.
In summary, this study mainly contributes as follows,

« A joint network is proposed to enhance the visual percep-
tion of infrared and visible images in extreme conditions.
This network effectively leverages the complementary
information from the source image.

« An TADSubNet is built to enhance the degraded
illumination component and the unique features of
both the infrared and visible images. Additionally, an
LGPFSubNet is developed to effectively utilize both local
and global features and dynamically fuse the complemen-
tary information.

« A mutual consistency loss is introduced to mitigate color
distortion and structural inconsistencies and improve the
quality of the fused image.

« Extensive experiments demonstrate that the proposed
method can adaptively fuse complementary information
based on illumination conditions and generate fused
images with brighter scenes and richer details.

The rest of this paper is arranged as follows. Section II
reviews the related work on infrared and visible image
fusion methods and retinex-based low-light image enhance-
ment methods. Section III describes the proposed method in
detail. Section IV presents the experimental setup and results.
Section V concludes this paper and discusses future work.

II. RELATED WORK

In this section, we initially introduce the existing infrared
and visible image fusion (IVF) methods. We categorize these
methods into four main groups, namely traditional IVF meth-
ods, CNN-based IVF methods, AE-based IVF methods, and
GAN-based IVF methods. Subsequently, we review image
enhancement techniques based on the Retinex theory [18].

A. IVF Methods

1) Traditional IVF Methods: Traditional IVF methods pri-
marily focus on extracting the intrinsic features of both
images for feature representation and applying specific fusion
rules to combine them [19]. For example, Li et al. [20]
introduced a multi-scale transformation and norm optimization
technique to enhance the quality of fused images. Sparse
representation-based fusion methods have also been widely
explored. Wang et al. [21] introduced an image fusion
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method based on sparse representation and geometric dictio-
nary learning. This approach exploits the sparsity inherent in
image representations to preserve information during fusion.
Ma et al. [22] proposed a multi-scale IVF method that relies on
visual saliency maps and weighted least squares optimization.
This method retains specific scale information through a multi-
scale decomposition method. Mou et al. [10] established an
IVF method based on the principles of the non-negative matrix
factorization and infrared target extraction. Li et al. [23]
proposed a multi-focus image fusion method based on sparse
feature matrix decomposition and morphological filtering.
These traditional methods have made significant contributions
to the field of infrared and visible image fusion. Nevertheless,
they often face challenges in capturing differences between
modalities and preserving fine details in complex scenes [12].

2) CNN-Based IVF Methods: CNN-based methods can
automatically extract image features, fuse multi-modal fea-
tures, and reconstruct images through an end-to-end network
with carefully designed loss functions. Zhang et al. [24]
proposed a network that separates information extraction into
two distinct paths, namely the gradient path and the intensity
path. They also formulated a unified loss function to guide
the network to generate fused images directly. Tang et al. [25]
integrated the image fusion and semantic segmentation tasks
and incorporated a semantic loss to enhance the image fusion
task performance. Sun et al. [26] proposed an image fusion
method that enhances detection performance through task-
driven image fusion. This method utilizes information from
both infrared and visible images to improve the results of
tasks such as object detection and tracking. PIAFusion [27]
introduces an illumination-aware network to achieve more
robust and effective image fusion results under extreme illumi-
nation conditions. Tang et al. [28] proposed a fusion method
that injects semantic information and preserves scene fidelity.
This network considers both semantic information and scene
fidelity to ensure that the fusion results perform well in
advanced tasks.

3) AE-Based IVF Methods: Numerous image fusion meth-
ods based on auto-encoders (AE) have been proposed due
to their flexibility and interpretability. Most methods employ
auto-encoders to extract features from the source images and
reconstruct images. The feature fusion process mainly depends
on manually designed fusion rules [29], [30]. Li and Wu [31]
adopted an auto-encoder for feature extraction and fusion
and incorporated dense connections within the encoder to
extract deep features. They then proposed NestFuse [32] and
RFN-Nest [15]. Specifically, NestFuse [32] introduces nested
connections in the network to extract multi-scale features from
source images. RFN-Nest [15] is designed with a loss function
that preserves details and another that enhances features,
compelling the network to acquire higher-quality integrated
detail features. Xu et al. [29] proposed a learnable fusion
rule that explores the interpretability of feature maps through
saliency map-based feature fusion. Zhao et al. [33] proposed a
model-based infrared and visible image fusion method (AUIF)
that improves the efficiency and performance of image
fusion while preserving accuracy based on the physical
model.
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4) GAN-Based IVF Methods: GANs can estimate proba-
bility distributions in an unsupervised fashion and enforce
network constraints at a distributional level via adversarial
loss. Therefore, they are suitable for unsupervised tasks
such as image fusion [12]. FusionGAN [16] incorporates
GAN into the image fusion process and eliminates the need
for manually designing complex fusion rules. Nevertheless,
using a single discriminator can result in imbalanced fusion
outcomes. To address this issue, Ma et al. [17] introduced
a Dual Discriminator Conditional Generative Adversarial
Network (GAN), which discriminates the structural differ-
ences between the fused image and the two source images
individually. Additionally, Xu et al. [34] incorporated a
self-attention mechanism into the GAN that enables attention-
driven operations and captures long-range dependencies to
mitigate the problem of local distortions. Le et al. [35]
proposed an unsupervised continual-learning generative adver-
sarial network (UIFGAN). It achieves unified image fusion
without the need for a large amount of annotated data under
supervision.

B. Retinex-Based Low-Light Image Enhancement

The Retinex theory is employed to explain and simulate
the perception of brightness and color in the human visual
system. It considers that the perceived brightness of each
pixel in an image can be expressed as the multiplication of
two components, namely the reflectance component and the
illumination component. The reflectance component conveys
the surface properties and color information of the object, and
the illumination component represents the impact of ambient
illumination, which is denoted as,

I=ROL, (D

where [ is the input low-light image. R and L denote the
reflectance, and illumination components of the image, respec-
tively. The © represents element-wise multiplication.

Many methods have been proposed to enhance low-light
images based on the Retinex theory, which decomposes an
image into reflectance and illumination components. They then
modify the estimated illumination to recover the image quality.
Guo et al. [36] proposed a structural prior model to refine
the initial illumination map for better image enhancement.
Hao et al. [37] applied Gaussian total variation as a regulariza-
tion term to build a decomposition model that reduces noise
and artifacts in the enhanced results.

With the development of deep learning, researchers have
attempted to utilize convolutional neural networks to estimate
reflectance and illumination maps [38], [39]. Lore et al. [40]
proposed the LLNet, which utilized stacked sparse denois-
ing autoencoders to enhance and denoise low-light images.
Jiang et al. [41] proposed a generative adversarial network-
based approach to create an unpaired mapping between
low-light and normal-light images. This method addresses the
issue of data dependency in low-light enhancement methods.
Guo et al. [42] introduced a reference-free enhancement
approach that transformed images using pixel value mapping
curves to produce the final output.
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Fig. 1. Architecture of the proposed method. The sub-figure (b) provides a
detailed description of the lightweight adaptive feature fusion module. Sub-
figure (c) and (d) present the architecture of the local feature extraction and
reconstruction modules, respectively.

III. PROPOSED METHOD
A. Overview

To address the incompatibility between image enhancement
and fusion, we propose a novel framework consisting of two
specialized subnetworks: the illumination-adjustment denois-
ing subnetwork (IADSubNet) and the local-global perceptive
fusion subnetwork (LGPFSubNet). The framework of the
network is shown in Fig. 1. These subnetworks collaborate
to maximize compatibility between the two tasks, leading
to improved fusion outcomes. Specifically, the visible image
is initially transformed into the YCbCr color space [43].
Subsequently, the Y channel of the visible image and the
infrared image are concatenated along the channel dimension
and fed into IADSubNet. This subnetwork decomposes and
enhances the input, and it generates enhanced infrared and
visible images as outputs, which is defined as,

{T;y. 1,;} = IADSubNet (%, I;;). )

Vi’

where [;; and Ifi denote the infrared and the Y channel of the
visible image respectively. The enhanced infrared and visible
images are represented as T; and T,;, respectively.

The enhanced infrared and visible images are then fed into
LGPFSubNet, which performs feature extraction, fusion, and
image reconstruction to produce the fused image IfY. The
process can be formulated as,

1Y = LGPFSubNet(T;», T,;). )

Finally, to obtain the fused color image Ir, we concatenate
I}/ , Cb, and Cr along the channel dimension, and then convert
them from the YCbCr domain to the RGB domain. This
process can be expressed as,

Iy = ’H(concat(lf, 10, 1,?)), “4)

where 7 (-) represents the conversion of the image from the
YCbCr colour space to the RGB colour space. Igb and IS’
indicates the Ch and Cr channels of the visible images.
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Fig. 2. Architecture of the illumination-adjustment denoising subnetwork.

B. Illumination-Adjustment Denoising Subnetwork

The architecture of the illumination-adjustment denois-
ing subnetwork is illustrated in Fig. 2. This subnetwork is
designed based on the robust Retinex model [44]. Specifically,
the mixed features of infrared and visible are first decomposed
into four components, namely enhanced infrared features Z,,
reflectance R, illumination L, and noise N as follows:

concat(lvyl-, ir) =ROL+N +Tir. 3)

The TADSubNet is a fully convolutional neural network that
employs identical convolutional layers to create four branches.
It comprises three 3 x 3 convolutional layers and a 1 x 1
convolutional layer. All layers except the last one use LReLU
activation. The last layer of the noise branch differs from the
others. To effectively handle additive noise, the noise branch
employs a tanh layer as its final layer and keeps noise values
within the range [—1, 1]. The other branches utilize sigmoid
layers.

In the reconstruction stage, the illumination component
is adjusted using a Gamma transformation, which can be
represented as,

L="L, (©6)

where y is the adjustable parameter in the gamma trans-
formation. The final restoration result combines the adjusted
illumination and noise-free reflectance,

7 =RoL @)

C. Local-Global Perceptive Fusion Subnetwork

The architecture of the local-global perception subnetwork
is depicted in Fig. 1. It consists of four modules i.e., the
local feature extraction module, the global feature extraction
module, the lightweight adaptive feature fusion module, and
the reconstruction module. The local feature extraction module
consists of 3 x 3 convolutional layers with LReLU activation
functions.

The specific architecture of the global feature extraction
module is illustrated in Fig. 3. This module combines multi-
layer perception and self-attention mechanisms to extract
global image features. The multi-layer perception effectively
stacks multiple 3 x 3 convolutional layers with GELU
non-linear activation functions to extract high-level feature
representations from the input image. These convolutional
layers effectively capture both local and global features of the
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Fig. 3. Architecture of the global feature extraction module.

input image. It allows the model to comprehend information
from various dimensions and levels within the image.

The self-attention mechanism enables the model to learn
informative feature representations by attending to the rela-
tionships between different spatial locations within the input
image. Thereby, it can enhance the ability of the model to
capture long-range dependencies. To reduce computational
complexity while emphasizing crucial features, a 1 x 1 convo-
lutional layer is employed to reduce the input dimension. The
self-attention mechanism process involves splitting the input
into query (Q), key (K), and value (V) components, followed
by computing attention weights that measure the relevance
of each key to each query. These weights are then used to
aggregate the corresponding values and generate an attention
representation. Finally, the projection layer uses the 1 x 1
convolutional maps of the features to generate the output with
the original dimension. The input image passes through self-
attention and multilayer perceptron layers, and the original
input is added to get the final output. This residual connection
helps preserve the input information and mitigate the vanishing
gradients issue.

The architecture of the lightweight adaptive feature fusion
module is shown in Fig. 1. This module has a lightweight
architecture with a convolutional layer, batch normalization,
and LReLU activation function. The lightweight adaptive
feature fusion module initially concatenates information from
two input feature maps. Subsequently, it uses a 1 x 1
convolutional layer to transform the input features into a lower-
dimensional space. This transformation is followed by batch
normalization to standardize the channel-wise activations, and
the application of the LReLU activation function to introduce
non-linearity. Furthermore, a Sigmoid function is utilized to
scale the features within the range [0, 1], and generates channel
weights that represent the relevance of each input feature map.
This enables the model to selectively emphasize or suppress
information from different input sources during the fusion
process. Finally, it concatenates the fused local and global
features along the channel dimension and feeds them into the
reconstruction module. The reconstruction module consists of
3 x 3 and 1 x 1 convolutional layers and a sigmoid function,
which produce the fused image.

D. Loss Function

1) Ilumination-Adjustment Denoising Loss: To update the
weights of the JADSubNet, it is necessary to employ a loss
function that ensures the network generates more accurate
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components. Consequently, we have designed a loss function
Liap consisting of five parts. It can be formulated as,
4 gLl

smooth

Liap = )‘I'Cg:con + )‘Z’Crécon
4+ AaLme + A5Loise

where LI - and LY. are the reconstruction losses for
infrared and visible images, respectively. L',islé‘llooth and L.
represent the illumination smoothness loss and the mutual con-
sistency loss, respectively. Lpoise denote the noise estimation
loss A1, X2, A3, A4, A5 stands for the corresponding balance
weight factors.

We introduce the infrared and visible image reconstruction
losses to preserve high-fidelity information from the original
images in the IADSubNet. The reconstruction losses are

defined as follows,

®)

Eigcon = ”Iir _’I\irHl’ ©)
‘C:écon = ||I\§;_(R®L+N)|1’ (10)
where || - ||; denote the /{-norm.

We further incorporate illumination smoothness and mutual
consistency losses to generate consistent and seamless
illumination components. These losses are inspired by
DIVFusion [45] and formulated as follows,

. VL
Ell]u — , 11
smooth max (| V1Y, &) | (an
Lme = IVLO exp(—c © VL) |1, (12)

where V denotes the gradient operation, and ¢ is a positive
constant. We apply the maximum operation to constrain the
minimum value of the denominator to be ¢ (0.01 in this work).
The parameter ¢ (set as 10 in this work) plays a crucial role
in shaping the mutual consistency loss function. By setting c,
we use the mutual consistency loss to enhance the medium-
gradient parts of the images.

When enhancing low-light scenes, the noise concealed
within the shadowed areas may also be amplified. To suppress
the amplified noise more accurately, we adopt a noise estima-
tion loss, which is formulated as,

ﬁnoise = ||L®N||2, (13)

where || - |2 denotes the l,-norm. The noise estimation loss
uses the illumination component as a weight to constrain the
noise component. It facilitates the model in separating the
noise component more effectively.

2) Local-Global Perceptive Fusion Loss: To improve the
fusion performance, we employ three loss functions namely,
texture loss, pixel loss, and mutual consistency loss. The local-
global perceptive fusion loss is represented as,

Licp = alﬂedge + a2£pix + a3 Lfme, (14)

where Legoe represents the edge loss, which helps the fused
image retain more edge detail information. L,ix is the pixel
loss that aims to preserve prominent target information from
the infrared image. Lrne represents the mutual consistency
loss that enhances the gradient consistency and visual quality
of the fused image.
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The edge loss is utilized to preserve the distinctive texture
details of the enhanced infrared and visible images. It can be
formulated as follows,

(15)

VIl — max(VI;, V1,;)

Eedge = ‘ 1

Similarly, pixel loss is a pixel-level constraint that measures
the difference between the fused image and the source image.
It can be represented as follows,

Loix = 11} =Tl (16)

The fused images often suffer from inconsistent gradient
distributions, resulting in discontinuous edges or blurry details.
To address this issue, we use a mutual consistency loss func-
tion on the fused image that minimizes the overall consistency
of gradients within the fused image, thereby preserving critical
details while mitigating high-gradient regions. This function
enhances the visual quality of the fused image and is defined
as,

Line = IV1} @ exp(—c © VI ) I, (17)

where c is a parameter set to 10.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Experimental Configurations

The MSRS [27] dataset is used to evaluate the performance
of the ICANet. The MSRS dataset includes high-resolution
infrared and visible images. It covers various object types
in different scenes, and these images have been pre-aligned.
We also use the LLVIP [46] and RoadScene [47] datasets
to illustrate the generalization ability of our method. These
datasets consist of infrared and visible images covering various
scenes and lighting conditions. The LLVIP dataset contains
images captured in extremely dark environments, and these
images are rigorously aligned in both time and space. The
RoadScene dataset contains a rich collection of scenes, such
as roads, vehicles, and pedestrians. This dataset has been
preprocessed to remove background thermal noise from the
original infrared images and to align the infrared and visible
images precisely. The illumination-adjustment denoising and
Local-global perceptive fusion subnetworks are trained on the
MSRS dataset. To evaluate the effectiveness of ICANet, a total
of 185 image pairs from the MSRS datasets are utilized. In
addition, 50 image pairs from the LLVIP dataset and 40 image
pairs from the RoadScene dataset were selected to evaluate
the generalization of the ICANet.

In this work, We compare our method with nine SOTA
methods, including CSF [29], CUFD [48], IFCNN [14],
PIAFusion [27], FusionGAN [16], U2Fusion [49], UMF-
CMGR [50], SDNet [51], and RFN-Nest [15]. We
implemented all comparison methods using their open-source
code and set the parameters as reported in the original papers.
To evaluate the fusion performance quantitatively, five metrics
are employed as objective measures. These metrics encompass
entropy (EN), spatial frequency (SF), average gradient (AG),
standard deviation (SD), and visual information fidelity (VIF).
EN quantifies the complexity and amount of information in
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the image. SF describes the variations in different scales and
frequencies in the image. It indicates the sharpness, clarity,
and fine details of the image. AG measures the gradient
information of the fused images by the intensity changes
across adjacent pixels. SD quantifies the distribution and
contrast of the fused images. It reflects the statistical quality
of the image. VIF measures the fidelity of the fused image
in terms of human visual perception. A fusion method with
higher values in EN, SF, AG, SD, and VIF has superior fusion
performance.

B. Training Details

The IADSubNet and LGPFSubNet are trained on the MSRS
dataset. To enrich the training data, we cropped the images into
multiple pairs of image patches. All images are preprocessed
by normalization and scaling to the range [0, 1] before being
fed into the subnetworks.

We adopted a two-stage training approach, where each sub-
network is trained separately. In the first stage, the IADSubNet
is trained with a batch size of 128, and the learning rate
is initialized as 0.0001. The training epoch is set as 100.
Subsequently, the output images from the IADSubNet are
utilized as the input for LGPFSubNet. In the second stage,
a batch size of 64 is set, and the learning rate is adjusted
to 0.001. The LGPFSubNet training epoch is set to 30. We
employed the Adam [52] optimizer to update the parameters in
both subnetworks. The hyperparameters in the loss functions
Eq. (8) A1, X2, A3, A4, and As are set to 1000, 2000, 7, 9
and 1, respectively. The oy, oy, and o3 in the Eq. (14) are
seated as 200, 0.1, and 1.1, respectively. The y in Eq. (6) is set
to 0.4. Both subnetworks are implemented using the PyTorch
framework and trained on the NVIDIA GeForce RTX 3090 Ti
GPU.

C. Fusion Performance Analysis

To comprehensively evaluate the performance of ICANet,
we conducted a comparative analysis with nine SOTA methods
on the MSRS dataset.

1) Qualitative Evaluation: The qualitative evaluation mea-
sures the level of satisfaction that humans have with an
image. A superior low-light fusion algorithm should extract
and enhance valuable information from the source images,
and produce a scene with high contrast and well-illuminated
details for images degraded by low-light conditions. We
selected a pair of typical infrared and visible images to
demonstrate the fusion performance of different algorithms on
the MSRS dataset visually in Fig. 4. It shows that the results
of PIAFusion and UMF-CMGR preserve some details from
the visible image, but they have an overall dark appearance
and are not visually pleasing. Additionally, other comparative
methods suffer from significant loss of details from the visible
image. In contrast, the proposed fusion method enhances the
texture information from the visible image and leads to a
brighter scene and a high-contrast fused image. The ICANet
also balances the intensity information from the infrared image
and the texture information from the visible image effectively.
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Fig. 4. Visualized results of different methods on the MSRS dataset.

TABLE I
QUANTITATIVE COMPARISONS ON 182 PAIRS OF IMAGES FROM THE
MSRS DATASET. THE DISPLAYED VALUES REPRESENT THE MEAN +
STANDARD DEVIATION. (THE BEST, SECOND-BEST, AND THIRD-BEST
RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY

EN SF 1 AG 1 SD ¢ VIF 1

CSF [29] 5.104£0613  5.180£1.122 14800397 20411£6406 0.61720.091
CUFD [48] 520940.567  6.668+1219  1.808+0.413 0.57140.085
IFCNN [14] 5.28140.506 22.8307.025

PIAFusion [27] 596040.600 924041680  283140.662 34.998£0.840  1.063+0.074
FusionGAN [16] 527040424 371540754  1.198:£0269  15713£4.371  0.493+0.114
U2Fusion [49] 451840675 644241464 160940502  19.599+6.445  0.493+0.055
UMF-CMGR [50] 506040328  5.405+1200  1.534£0357 1529745.175  033620.071
SDNet [51] 483340441  6.443£1258 189940446  14.021+4.363  0433+0.073
REN-Nest [15] 467841133 1386£0.364 231696751  0.667+0.128
Ours 685310416 1147851553 300810.639 42.153%8.150  T.10120.830

2) Quantitative Evaluation: To further validate the effec-
tiveness of ICANet, we selected 182 pairs of images from
the MSRS dataset for quantitative comparisons. As illustrated
in Table I, the results demonstrate that the ICANet outper-
forms other methods in all five metrics. The highest EN
metric indicates that the results of the ICANet with higher
information content and better visual effects. The highest
SF and AG metrics indicate that ICANet preserves more
texture information. The highest SD metric suggests that the
fusion results of the proposed method have a higher contrast.
The synergistic effect of image enhancement and fusion in
ICANet leads to higher VIF metrics than other SOTA methods.
In summary, the ICANet can effectively extract valuable
information in low-light scenes. It leverages IADSubNet to
enhance the illumination component and reduce noise, which
is then integrated into the fused image. Consequently, the
proposed method exhibits clear advantages over other SOTA
methods.

D. Generalization Evaluation

In the domain of deep learning, the generalization ability
of a model is a crucial metric. Generalization ability refers
to the performance of a model on unseen data. It indicates
the adaptability of the model to new samples. To evaluate
the generalization performance of the ICANet, we conducted
evaluations on the LLVIP and RoadSence datasets. It is
essential to mention that the ICANet is trained on the MSRS
dataset and subsequently evaluated directly on the LLVIP and
RoadSence datasets.

1) Generalization Evaluation on the LLVIP Dataset: Fig. 5
illustrates a pair of typical infrared and visible images captured
under nighttime conditions. The fusion results of the proposed
method reveal a bright scene with salient objects, uncovering
the hidden details in dark areas. In the red box, the ICANet
leverages salient information from the infrared image and
improves the visibility of the targets by enhancing the contrast.
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Fig. 5. Visualized results of different methods on the LLVIP dataset.

TABLE 11
QUANTITATIVE COMPARISONS ON 50 PAIRS OF IMAGES FROM THE
LLVIP DATASET. THE DISPLAYED VALUES REPRESENT THE MEAN +
STANDARD DEVIATION. (THE BEST, SECOND-BEST, AND THIRD-BEST
RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY)

EN 1 SF 1 AG 1 SD 1 VIF 1

CSF [29] 6.698+0.383  8.21+4.129 2.575+1.534  32.502+9.808 0.695+0.113
CUFD [48] 6.681+0.313  7.234+3.39 2.03+1.246 33.846+4.771 0.627+0.141
IFCNN [14] 6.73440.466

PIAFusion [27] 7.17840.327  14.6854+8.537  4.3124£2.906  44.701£10.499  0.952£0.109
FusionGAN [16] 6.308+0.312  6.921+3.059 1.947+£1.042  24.822+4.483 0.47640.079
U2Fusion [49] 6.3604+0.581  11.0474+6.177  3.289+2.243  31.219+11.383  0.674+0.091
UMF-CMGR [50]  6.462+0.501  9.91646.569 2.50441.895  29.38+10.066 0.52140.070
SDNet [51] 6.6804+0.338  12.098+7.258  3.439+2.361  31.802+6.250 0.63540.078
RFN-Nest [15] 6.3214+2.917 2.158+1.155  34.64648.666 0.669+0.131
Ours 7.303+0.289  19.149+8.883  6.068+£3.232  43.982£8.504 1.076+0.302

In the green box, only the ICANet preserves crucial scene
details, while other methods fail to provide information for
this region. This observation indicates that ICANet improves
the fusion performance by extracting information in the dark
regions through IADSubNet.

Table II presents the results of quantitative experiments on
the LLVIP dataset. We compare the performance of ICANet
with nine SOTA methods. The results demonstrate that ICANet
achieves the highest scores in EN, SF, AG, and VIF metrics.
The higher scores in EN, SF, and AG indicate that I[CANet
effectively preserves texture information in the source images.
The superior VIF metric implies that ICANet successfully
transfers more information into the fused image. For the SD
metric, the ICANet ranks second, only behind the PIAFusion.
This high ranking indicates that the proposed fusion method
maintains visual similarity with the source images, and high-
lights its potential for accurate and reliable fusion results.

2) Generalization Evaluation on the RoadScene Dataset:
We further employed the RoadScene dataset to validate the
generalization ability of ICANet with qualitative and quantita-
tive experiments. The RoadScene dataset consists of grayscale
images, and the infrared and visible images are mostly
acquired under normal lighting conditions. Therefore, the full
potential of the ICANet cannot be fully utilized. However,
the ICANet still demonstrates comparable performance to
SOTA methods. As shown in Fig. 6, this example illustrates
a representative pair of images from the RoadScene dataset.
The fusion results of CSF, CUFD, FusionGAN, RFN-Nest,
and UMF-CMGR exhibit noticeable blurriness and signifi-
cant loss of scene information. IFCNN, PIAFusion, SDNet,
and U2Fusion preserve more texture information, but have
low scene contrast and poor information balancing from the
infrared and visible images. In contrast, the ICANet not only
achieves superior scene contrast but also retains rich texture
details.
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Fig. 6. Visualized results of different methods on the RoadScene dataset.

TABLE III
QUANTITATIVE COMPARISONS ON 40 PAIRS OF IMAGES FROM THE
ROADSCENE DATASET. THE DISPLAYED VALUES REPRESENT THE MEAN
+ STANDARD DEVIATION. (THE BEST, SECOND-BEST, AND THIRD-BEST
RESULTS ARE MARKED IN RED, BLUE, AND GREEN, RESPECTIVELY)

EN SF 1 AG 1 SD 1 VIF 1
CSF [29] 7.35140.273 12.49343.145 5.098+1.456 455744912 0.572+0.103
CUFD [48] 29940.220 13.9494+2.759  5.442+1.219 48.318+7.507  0.587+0.105
IFCNN [14] 7.202+0.287 15.991+4.167 6.373+1.735  40.518+8.371 0.568+0.109
PIAFusion [27] 6.94940.227 12.26242.967 4.410£1.263  42.007+5.609  0.663+0.094
FusionGAN [16] 7.0174£0.252  8.126+1.455 3.2054+0.648  37.486+6.243  0.364+0.058
U2Fusion [49] 7.1404+0.303 14.7054+3.648  6.004+1.611 38.666+8.520  0.537+0.104
UMF-CMGR [50] 6.99540.349 10.46142.923  4.089+1.229  35.583+8.655  0.58440.108
SDNet [51] 7.29440.247 15.112+3.624 6.119£1.631 43.505+£8.096 0.5 0.103
RFN-Nest [15] 7.29740.255 7.639+1.703 3.3104+0.888  44.12248.749  0.500+0.091
Ours 7.327+0.255 19.279+5.265 6.408+2210 46.381+6.690  0.5334+0.091
Table III summarizes the numerical results on the

RoadScene dataset. The ICANet outperforms other methods
in terms of AG and SF. This demonstrates that the fusion
results of the ICANet exhibit high contrast. The ICANet also
achieves the second-best performance on EN and SD, which
indicates that the fused images of the ICANet contain richer
detailed information. However, the ICANet shows suboptimal
performance on the VIF metric. The challenge arises from
the fact that the proposed method targets the adjustment of
the image’s illumination level to achieve a brighter scene,
which might not be well-suited for grayscale images in
the RoadScene dataset. Consequently, the method encounters
difficulty in fine-tuning the image to closely align with human
visual perception.

E. Application to Object Detection

This section validates the effectiveness of the ICANet for
downstream object detection tasks using the fusion images
generated by the proposed method. For the object detection
task, the Yolov5 [53] is used to evaluate the performance of
the source images and our fused images.

As shown in Fig. 7, the visible images have difficulties
in capturing adequate information in low-light environments,
which hinders the detection of pedestrians. In contrast, infrared
images can capture thermal information. It helps emphasize
prominent targets like pedestrians. However, infrared images
lack detailed information about objects such as vehicles. This
results in reduced detection accuracy for such objects. The
proposed model effectively integrates meaningful information
from the source images, thereby improving the detection
accuracy of pedestrians and vehicles. Table IV presents the
quantitative metrics for the object detection task. Precision
represents the probability of correctly predicting positive
samples among all samples predicted as positive. Higher
precision means a higher rate of correctly detected positive
samples. Recall is the probability of correctly predicting
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Fig. 7. Visual results of object detection on the MSRS dataset.
TABLE IV
OBJECT DETECTION QUALITATIVE EVALUATION OF INFRARED,
VISIBLE, AND FUSED IMAGES ON THE MSRS DATASET. THE BEST AND
SECOND-BEST RESULTS ARE HIGHLIGHTED IN RED
AND BLUE, RESPECTIVELY

Precision T Recall T mAP@0.50 © mAP@[0.5:0.95] 1
Infrared 0.88 0.686 0.812 0.569
Visible 0913 0.765 0.804 0.533
Ours 0.929 0.747 0.875 0.604

positive samples among all positive samples. Higher recall
indicates fewer missed detections. Another crucial detection
performance indicator is the mean average precision (mAP),
where a value closer to 1 signifies superior object detection.
Specifically, mAP@0.50 represents the mAP value at a confi-
dence threshold of 0.5, while mAP@[0.5:0.95] is the average
of all mAP values at different loU thresholds (ranging from
0.5 to 0.95 with an interval of 0.05). Table IV shows that the
fused images produced by the proposed method achieve the
best precision, mAP@0.50, and mAP@[0.5:0.95] values. The
proposed method also achieves the second-highest recall.

In summary, ICANet effectively fuses the salient object
information in infrared images and the texture structure
information in visible light images through the collaborative
action of IADSubNet and LGPFSubNet. It also improves the
overall brightness of the fused image.The differentiation of
the targets in the fused image is significantly improved, thus
achieving superior performance in the target detection task.

F. Ablation Study

To evaluate the effectiveness of each component in the
ICANet, we conduct an ablation evaluation on the four
key components, i.e., mutual consistency loss, illumination-
adjustment denoising subnetwork, global feature extraction
module, and lightweight adaptive feature fusion module. We
present the quantitative results summarized in Table V and
list the qualitative results in Fig. 8. Qualitative and quanti-
tative experiments indicate that the removal of Lgy. from
the proposed method results in increased noise and reduced
smoothness in the fused image. Moreover, the EN, SF, AG,
and SD indicators exhibit a decline. When the IADSubNet
is removed, the visual results turn out to be obvious degra-
dation. Removing TADSubNet results in considerable visual
degradation and darkened imagery. For the validity of the
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Fig. 8. Visual results of ablation study.

TABLE V
QUANTITATIVE EVALUATION RESULTS OF ABLATION STUDY. THE BEST,
SECOND-BEST, AND THIRD-BEST RESULTS ARE MARKED IN RED, BLUE,
AND GREEN, RESPECTIVELY. “W/O” DENOTES “WITHOUT”

EN © SF 1 AG 1 SD VIF
W/O Lime 6.830+£0.424  11.134£1.521  3.79240.657 41.5434+7.788  1.12740.19
W/O IADSubNet ~ 6.000+£0.516  8.864-:1.703  2.681+0.628  32.63548.68  0.996:0.088
W/O GFE 11.38541.608  3.92340.649  41.64248.161  1.084-0.195
W/O LAF 6.857+0.403 3.889£0.629  42.32948.099  1.13540.201
Ours 6.853+£0416  11.478+1.553  3.908+0.639  42.153+8.159

experiment, we replaced the GFE module with the local feature
extraction module. When the global feature extraction module
is replaced from the method, the fusion results lose a lot
of detailed information, and in the quantitative experiments,
the EN, SF, SD, and VIF indicators decrease significantly.
The LAF module achieves a dynamic fusion of local and
global information. The absence of the LAF module resulted
in ghosting and color distortion issues, highlighting its role in
balancing local and global information for dynamic fusion.

V. CONCLUSION

In this study, we proposed the illumination component
adjusting network (ICANet) for infrared and visible image
fusion. This network achieves the integration of image
enhancement and image fusion tasks. Specifically, we ini-
tially constructed the IADSubNet to isolate and enhance
the illumination, reflection, and noise components, thereby
augmenting the scene information in images. Subsequently,
we designed the LGPFSubNet for image fusion, which
integrates local and global information through specialized
extraction modules. A lightweight feature fusion module is
then employed to dynamically fuse the features of the infrared
and visible images. To enhance the fused image quality, we
implemented mutual consistency loss. Experimental results
demonstrate that the ICANet outperforms the SOTA methods
in terms of performance qualitative and quantitative eval-
vations. Furthermore, the application of ICANet in object
detection tasks underscores its effectiveness.

As part of future work, we intend to develop an adaptive
illumination adjustment module tailored for fusing images
with varying degradation levels. Additionally, we will explore
methods to integrate semantic information into the fusion
process. This investigation entails combining infrared images
and visible images with semantic segmentation masks to
augment the efficacy of downstream tasks, including object
detection and tracking.
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