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ARTICLE INFO ABSTRACT
Keywords: Time series forecasting plays an essential role in supporting critical decision-making processes in risk
Time series data analysis management and resource allocation in various fields, including finance, transportation, industrial systems,
State space models etc. Conventional models can effectively capture volatility and, are proficient in handling specific patterns,
Denoising diffusion probabilistic models such as the AutoRegressive Integrated Moving Average model (ARIMA) and the Generalized AutoRegressive
Mamba Conditional Heteroskedasticity model (GARCH). Nonetheless, these models meet many challenges, such as
high dimensionality, non-stationarity, and nonlinearity inherent in real-world data. Although deep learning
methodologies can provide better performance, they may still suffer from long-term errors and heightened
computational expenses. A novel framework named Mamba Diffusion Probabilistic Models (MambaDiffTS) is
proposed, which integrates Mamba’s state space model with a frequency-aware diffusion process grounded
in Denoising Diffusion Probabilistic Models (DDPM). Mamba’s selective state transitions enable linear-time
modeling of long-range dependencies; at the same time, frequency-aware spectral decomposition isolates
trends and seasonality through Fourier regularization. Furthermore, the implementation of spectral energy-
guided noise scheduling preserves temporal fidelity. Extensive experiments on diverse benchmarks-financial
volatility, industrial IoT sensor data, and climate modeling-demonstrate MambaDiffTS’s superiority. Notably,
on stock forecasting tasks, MambaDIiffTS reduces Mean Squared Error (MSE) by approximately 18.6% compared
to the best-performing baseline, and substantially outperforms diffusion models, all while maintaining linear
computational complexity. The proposed MambaDiffTS facilitates scalable forecasting over extended horizons.
1. Introduction quadratic computational cost of the attention mechanism. In the initial
stages, classic methodologies such as AutoRegressive Integrated Moving
Time series analysis has been a linchpin in dynamic system mod- Average (ARIMA) (Box and Jenkins, 2015) and Generalized AutoRe-
eling, as a cornerstone for understanding and predicting various phe- gressive Conditional Heteroskedasticity Model (GARCH) (Bollerslev,
nomena. Traffic flow prediction, as a typical long-term time series 1986) were the workhorses in econometrics and signal processing.

problem, poses unique challenges. On the one hand, it involves multi-
scale patterns ranging from short-term peak hours to long-term seasonal
trends. On the other hand, the sequence is often affected by abrupt
non-stationary fluctuations caused by external factors such as acci-
dents or weather conditions. Furthermore, large-scale urban networks
require real-time inference, which further increases the difficulty of
modeling. Traditional statistical models and even deep learning ar-
chitectures usually fail to capture these characteristics simultaneously,
either due to error accumulation in long sequences or the excessive

ARIMA’s prowess in handling linear trends and seasonality, along with
GARCH’s ability to capture volatility clustering, made them invaluable
in these domains. As the complexity of modern datasets exploded, these
traditional approaches nonetheless encountered significant limitations.
Real-world data often exhibit intricate nonlinear interactions and high-
dimensional patterns, which extend beyond the capabilities of ARIMA
and GARCH models. For example, in complex financial markets where
multiple factors interact nonlinearly, or in environmental monitoring
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systems with a large number of sensors, these classic models struggle
to provide accurate and comprehensive descriptions (Shumway and
Stoffer, 2017; Bauwens et al., 2006).

The advent of deep learning represented a paradigm shift in the do-
main of time series analysis. Recurrent Neural Networks (RNNs) (Sher-
stinsky, 2020) and their derivatives, like Long Short-Term Memory
(LSTM) (Graves, 2012) and gated RNNs (Chung et al., 2015), bring
new hope. By incorporating memory cells, they enabled the modeling of
sequential dependencies, which was a significant leap forward. LSTM-
based architectures achieved remarkable success in tasks such as traffic
flow prediction (Tian and Pan, 2015) and anomaly detection (Lu et al.,
2023). The autoregressive nature of these models presents an inherent
limitation. In long sequences, errors have a propensity to accumulate,
significantly limiting their scalability. In applications like long-term
stock price prediction, where the sequence length can be substantial,
the error propagation in LSTM-based models can lead to inaccurate
forecasts (Rather, 2021).

Concurrently, Convolutional Neural Networks (CNNs) emerged as
an alternative for time series forecasting. Leveraging hierarchical fea-
ture extraction through dilated convolutions (Chen, 2015; Borovykh
et al.,, 2017), CNNs can capture local patterns in time series data.
Nevertheless, they lack the ability to adaptively weigh temporal de-
pendencies across different scales. For instance, in a time series of
power consumption data, where short-term spikes and long-term trends
coexist, CNNs may not be able to effectively distinguish and model
these different temporal characteristics.

The advent of Transformer architectures (Vaswani et al., 2017) was
another game-changer. By leveraging self-attention mechanisms, they
could better handle long-range dependencies in time series. This led
to the development of specialized variants such as Informer (Zhou
et al.,, 2021) for long-term forecasting and Autoformer (Wu et al.,
2021) for seasonal-trend decomposition. Despite their achievements,
Transformers suffer from quadratic computational complexity. This
complexity becomes a major bottleneck, especially when dealing with
large-scale time series data. To address this issue, innovations like
iTransformer (Liu et al., 2023) and Fredformer (Piao et al., 2024)
have been proposed. Meanwhile, pretrained language models like Bidi-
rectional Encoder Representation from Transformers (BERT) (Devlin
et al., 2019) inspired temporal adaptations such as TimeBERT (Wang
et al., 2022). These models are constrained by their rigid tokenization
strategies when applied to continuous time series. In continuous sensor
data, the fixed tokenization may not be able to capture the fine-grained
information effectively (Wen et al., 2023). Beyond early variants such
as Informer (Zhou et al., 2021) and Autoformer (Wu et al., 2021), more
specialized models have emerged. For example, Self-supervised Learn-
ing Spatio-temporal Entanglement Transformer (SSL-STMFormer) (Li
et al., 2025) introduces a self-supervised framework to disentangle
spatio-temporal dependencies, enhancing robustness under limited la-
beled data. Learnable Long-range Graph Transformer (Llgformer) (Jin
et al., 2025) leverages learnable long-range graph structures to cap-
ture non-local correlations in large-scale urban networks. Meanwhile,
Stlteformer: Spatio-temporal Long-term Embedding transforme (STLTE-
former) (Chauhan et al., 2025) focuses on long-term spatio-temporal
embedding, improving the modeling of seasonal and trend compo-
nents in traffic series. These advances highlight the continuous efforts
to adapt Transformer architectures for real-world traffic scenarios;
however, their reliance on quadratic attention mechanisms still poses
scalability challenges, especially in large-scale deployment.

A new paradigm emerges with SSMs, particularly Structured State
Space Sequence Model (S4) (Gu et al., 2021) and its successor Mamba
(Gu and Dao, 2023). These models combine linear-time complexity
with selective state transitions, enabling efficient modeling of long-
range dependencies. Mamba’s input-dependent gating mechanism and
hardware-aware design (Ahamed and Cheng, 2024) have shown re-
markable performance in tasks like electricity demand forecasting,
outperforming Transformer-based counterparts (Zhou et al., 2021; Wu
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et al.,, 2021). In parallel, diffusion models (Ho et al., 2020) have
significantly expanded generative capabilities. Frameworks such as Au-
toregressive Diffusion (Rasul et al., 2021) have adapted to the denoising
process of time series. While isotropic noise injection is a common com-
ponent in diffusion approaches, it often degrades the temporal fidelity
of existing methods—and even erases critical multi-scale patterns in
the time series. For example, in Multi-Granularity Time Series Diffusion
(MG-TSD) (Fan et al., 2024a), which introduces multi-granularity guid-
ance, the reliance on computationally intensive transformer backbones
limits its practical application in real-world scenarios.

To fill in these lacunae and conquer the constraints of existing
methodologies, we propose a novel integration of Mamba’s selec-
tive state space mechanisms with diffusion-based generation. In con-
trast to prior autoregressive diffusion models (Rasul et al., 2021)
or transformer-centric approaches (Huang et al., 2024), our frame-
work capitalizes on Mamba’s linear-time processing ability to maintain
long-term dependencies. We introduce a frequency-aware diffusion,
which constitutes a pivotal innovation. This process carefully aligns
noise scheduling with seasonal and trend components in the time
series through Fourier-regularized losses (Wu et al., 2021). As a re-
sult, it effectively mitigates the loss of high-frequency oscillations
that occur in traditional diffusion steps (Fan et al., 2024a). Addition-
ally, Mamba’s structured state dynamics offer interpretable intermedi-
ate representations. This is a crucial advantage over the “black-box”
transformer-based models (Wang et al., 2022; Wen et al., 2023),
especially in sensitive domains such as healthcare and finance, where
interpretability is essential for decision-making.

We conducted comprehensive experiments on benchmarks covering
financial volatility (Bollerslev, 1986), industrial IoT sensor data (Tian
and Pan, 2015), and climate modeling (Shumway and Stoffer, 2017).
The results unequivocally demonstrate that the proposed approach
surpasses classical methodologies in both the fidelity of generated
outputs and computational efficiency. By integrating Mamba’s efficient
computation with diffusion models’ generative capacity, we establish a
scalable framework for interpretable time-series synthesis. This hybrid
architecture addresses critical challenges in modeling high-dimensional
temporal patterns and long-range dependencies across scientific do-
mains. In summary, the major contributions in this paper are presented
as follows:

1. A Unified State-Space Diffusion Framework for Time-Series
Synthesis: We proposed the MambaDiffTS framework, which
attempts to integrate Mamba’s selective state-space mechanisms
with a diffusion process. It is intended to achieve some improve-
ment in efficiency and fidelity when modeling long-horizon
temporal dependencies. The framework draws on Mamba’s lin-
ear computational complexity O(Td) and input-dependent gating
to dynamically focus on critical temporal patterns, aiming to en-
able scalable synthesis of complex sequences spanning thousands
of time steps.

2. Frequency-Aware Spectral Decomposition and Noise
Scheduling: This study introduces a novel framework that inte-
grates Fourier-based decomposition with spectral energy-guided
diffusion to explicitly decouple low-frequency trends from high-
frequency seasonality components. By adaptively adjusting noise
injection based on frequency energy, the framework preserves
multi-scale patterns (e.g., hourly traffic oscillations and annual
economic cycles) and ensures realistic synthesis of complex
temporal structures.

3. Scalable Multi-Domain Generalization: The framework
demonstrates robust performance across heterogeneous
domains-from high-frequency financial volatility to sparse indus-
trial sensor data-validating its ability to handle diverse tempo-
ral dynamics without domain-specific tuning. This universality
stems from Mamba’s state-space flexibility and the diffusion
process’s adaptability to spectral characteristics.
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The remainder of this study is structured as follows. Section 2
reviews related work on traditional models, SSMs (e.g., Mamba), and
diffusion models. Section 3 introduces Denoise Diffusion Probabilistic
Models (DDPMs) and Mamba as preliminaries. Section 4 details the
MambaDiffTS framework. Section 5 presents and analyzes experimental
results. Finally, Section 6 concludes the study and outlines future work.

2. Related work

Numerous empirical studies have leveraged deep neural networks
for traffic flow prediction. LSTM-based models (Tian and Pan, 2015)
can capture short-term sequential dependencies but are prone to error
accumulation in long sequences. CNN-based methods (Borovykh et al.,
2017) improve local feature extraction yet fail to adapt to heteroge-
neous temporal scales. Transformer-based models (e.g., Informer (Zhou
et al.,, 2021)) are capable of handling long-range dependencies, but
they are constrained by quadratic complexity, which limits their real-
time applicability in traffic systems. Recently, diffusion-based models
(e.g., TimeGrad (Rasul et al,, 2021)) have been applied; however,
isotropic noise injection often over-smooths high-frequency traffic dy-
namics, leading to reduced fidelity during traffic peak hours. These
limitations underscore the need for a framework that is both compu-
tationally efficient and capable of preserving the multi-scale structures
of traffic flow sequences.

2.1. Traditional approaches for time series analysis

Time series data appear across diverse domains such as finance,
healthcare, and industrial systems, characterized by complex temporal
dependencies, seasonality, and non-stationarity. Traditional statistical
models like ARIMA (Box and Jenkins, 2015) and GARCH (Bollerslev,
1986) have been widely used for univariate forecasting but strug-
gle with non-linearity and high-dimensional dependencies. For multi-
variate settings, Vector Autoregressive Model(VAR) (Liitkepohl, 2005)
provides an extension but suffers from scalability issues.

Deep learning has significantly advanced time series modeling by
introducing architectures that capture complex dependencies. RNNs
and their variants (Hochreiter and Schmidhuber, 1997; Cho et al.,
2014) enable sequential memory propagation but face limitations in
long-term dependency modeling due to vanishing gradients and autore-
gressive error accumulation. CNN-based approaches (Borovykh et al.,
2017) leverage dilated convolutions for parallelized feature extraction
but lack adaptability to dynamically changing patterns. Transform-
ers (Vaswani et al., 2017) introduce self-attention for capturing long-
range dependencies, with adaptations such as Informer (Zhou et al.,
2021) and Autoformer (Wu et al., 2021) improving efficiency. How-
ever, their quadratic complexity remains a bottleneck, especially for
long-horizon forecasting.

For generative modeling, Generative Adversarial Networks (GANSs)
(Goodfellow et al., 2014) and Variational Autoencoders (VAEs)
(Kingma and Welling, 2014) have been applied to time series synthe-
sis but face challenges in mode collapse and blurry reconstructions.
Recently, diffusion models (Ho et al., 2020) have emerged as a pow-
erful alternative due to their stability and sample quality. However,
applying them to time series remains non-trivial due to their re-
liance on Transformer-based architectures, which introduce significant
computational overhead.

2.2. State space models and mamba

SSMs represent a significant advancement in time series analy-
sis, addressing limitations of traditional autoregressive frameworks
and modern deep learning architectures. While classical methods like
ARIMA and GARCH excel in modeling linear trends and volatility (Box
and Jenkins, 2015; Bollerslev, 1986), they falter in capturing nonlin-
ear interactions and high-dimensional dependencies (Liitkepohl, 2005).
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Similarly, deep learning approaches such as RNNs and Transformers
struggle with error accumulation in long sequences or quadratic com-
putational costs (Vaswani et al., 2017; Zhou et al., 2021), as highlighted
in Section 4.

SSMss circumvent these challenges by maintaining structured latent
states that evolve over time, enabling efficient modeling of long-range
dependencies without explicit recurrence or attention mechanisms (Gu
et al., 2021). Early SSM variants, such as the S4, demonstrate potential
in tasks like electricity demand forecasting but face practical limitations
due to computational overhead and specialized initialization require-
ments (Gu et al., 2021). The introduction of Mamba (Gu and Dao, 2023)
revolutionized this paradigm through two key innovations:

1. Selective State Transitions: Mamba dynamically adjusts infor-
mation flow via input-dependent gating, allowing adaptive modeling
of non-stationary temporal patterns, which is a critical capability for
real-world datasets with shifting dynamics (Gu and Dao, 2023).

2. Hardware-Aware Efficiency: By optimizing memory usage and
parallelizing state updates, Mamba achieves linear computational com-
plexity, outperforming Transformers in scalability for long sequences
(Ahamed and Cheng, 2024).

Mamba’s efficient state-space architecture offers a solution: by re-
placing Transformer backbones with selective state transitions, it re-
duces computational costs while preserving temporal fidelity (Ahamed
and Cheng, 2024). For instance, TimeMachine (Ahamed and Cheng,
2024) demonstrates that Mamba-based frameworks achieve superior
performance in long-term forecasting tasks, maintaining interpretable
representations essential for domains like healthcare and finance.

By integrating SSMs with diffusion processes, Mamba bridges the
gap between efficiency and generative flexibility, as detailed in Sec-
tion 4. This synergy addresses longstanding challenges in high-
dimensional time series synthesis, offering a scalable alternative to
traditional and Transformer-centric approaches.

2.3. Diffusion models for time series generation

Diffusion models have emerged as a powerful generative framework
by iteratively mapping noise to structured data through a learned
denoising process (Ho et al., 2020). Diffusion models have distinct char-
acteristics compared to other generative models. GANs need adversarial
training, while VAEs impose strong latent space constraints. In contrast,
diffusion models operate differently. They model the reverse process
of a stochastic perturbation. This unique approach ensures stable and
diverse sample generation.

For time series applications, TimeGrad (Rasul et al., 2021) in-
troduces a diffusion-based probabilistic forecasting approach, while
Conditional Score-based Diffusion Models(CSDI) (Tashiro et al., 2021)
extend diffusion models for time series imputation. More recent work,
such as Multi-Granularity Time Series Diffusion (MG-TSD) (Fan et al.,
2024a), has focused on enhancing diffusion-based generation through
multi-scale conditioning. However, most diffusion models employ
Transformer-based denoisers, leading to high computational costs and
limited scalability.

A core challenge for time series diffusion models lies in maintaining
temporal consistency. Conventional isotropic noise injection mecha-
nisms tend to erase fine-grained temporal dependencies, resulting in
synthesized sequences with unrealistic fluctuations. Some approaches
have explored frequency-aware regularization (Wu et al., 2021) and
adaptive noise scheduling (Huang et al., 2024) to mitigate these effects,
However, these methods introduce additional complexity. Transformer-
based architectures are burdened with quadratic complexity, which
causes the computational cost to rise exponentially as the sequence
length expands. In scenarios such as long-term stock price forecasting
or long-term environmental sensor data analysis, this high computa-
tional cost results in slow processing and excessive resource consump-
tion, rendering them unsuitable for long-sequence generation. Recently,
diffusion-based approaches have attracted increasing attention in traffic
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prediction tasks due to their strong generative capabilities. For in-
stance, Traffic State Generative Diffusion Model (TSGDiff) (Zhang et al.,
2025) leverages multi-source information fusion to enhance traffic
state generation, enabling robust modeling under heterogeneous data
conditions. Similarly, the Interactive Diffusion GCN (Zhang et al., 2024)
integrates graph convolution with dynamic diffusion processes to cap-
ture spatio-temporal correlations adaptively. In parallel, Random Graph
Diffusion Attention Network (RGDAN) (Fan et al., 2024b) introduces a
random graph diffusion attention mechanism that effectively balances
global structural dependencies with local temporal dynamics. In con-
trast, SSMs offer a promising alternative for denoising networks. SSMs
manage structured latent states that change over time, effectively han-
dling long-range dependencies without relying on explicit recurrence
or attention mechanisms. Among them, Mamba stands out with its
input-dependent gating mechanism. This mechanism enables Mamba
to adaptively regulate information flow, prioritize crucial temporal
patterns, and focus on key data features, like peak demand periods in
electricity demand forecasting. Mamba’s efficient state-space updates
operate with linear computational complexity O(Td), allowing it to
preserve long-term dependencies while slashing computational over-
head compared to Transformer-based models. Consequently, Mamba
provides a scalable solution for high-dimensional time series synthesis
across diverse domains.

Recent studies have proposed hybrid architectures that combine
frequency decomposition with diffusion-based learning (Piao et al.,
2024; Huang et al., 2024). The integration of these latest findings
further motivates the adoption of frequency-aware noise scheduling in
MambaDiffTS.

3. Preliminaries
3.1. DDPMs

DDPMs (Ho et al., 2020) have emerged as a powerful generative
modeling framework based on the principle of iterative denoising. The
core idea is to transform a data distribution into a Gaussian prior using
a forward diffusion process. Subsequently, a neural network, parame-
terized for this purpose, is employed to learn the reverse transformation
via a denoising process.

Forward Diffusion Process. Given a data sample x, ~ ¢(x), the
forward diffusion process progressively corrupts it by adding Gaussian
noise over T steps:

‘I(Xxle_l) = N(xt; V 1- ﬂzxt_laﬂrl)a (1)

where p, is a predefined noise variance schedule. This leads to a closed
- form distribution:

a(x,1x0) = N (x5 /8,x0, (1 — @)D, @)

where @, = []'_, (1 - §,) represents the cumulative noise scale.

Reverse Denoising Process. The generative process learns to re-
cover x, from a pure Gaussian sample x; ~ N'(0, I) by approximating
the reverse transition:

Po(xXi_11x) = N (x,_1; pg(x;s 1), Zg(x5 1)), ()

where yy(x,,1) and 2y(x,, ) are neural network - predicted mean and
variance. In practice, most DDPM implementations fix X, and train a
model ¢,(x,,t) to predict the added noise directly:

Xp = \/&_rxo
Vi-a,

This formulation allows efficient optimization using the simplified
variational objective:

4

€p(x;, 1) =~

Lppu = Ex, 1, €llle = 5 (x,, DI, (5)
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where ¢ ~ WN(0,1) is a Gaussian noise sample. Due to their sta-
bility and high-quality generation, DDPMs surpass traditional gener-
ative models such as GANs and VAEs. However, DDPMs often rely
on Transformer-based denoisers, leading to high computational costs,
particularly for long time series. This prompts the investigation of more
efficient architectures, such as state space models.

3.2. Mamba: Selective state space model for efficient sequence modeling

Mamba (Gu and Dao, 2023) is an SSM model designed as an efficient
strategy alternative to Transformer-based architectures. Unlike Trans-
formers, which rely on self-attention mechanisms, Mamba leverages
structured state-space updates to model long-range dependencies with
linear computational complexity.

State Space Model Formulation. A continuous-time state space
model is defined by the equations:

%x(z‘) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (6)

where x(7) is the hidden state, u, is the input, y, is the output, and
A, B, C, and D are learnable system matrices. This process enables
efficient information propagation over long sequences without the need
for explicit recurrence or attention mechanisms.

To discretize this process, we define the discrete update rule:

X.41 = AX, + Bu,, y, = Cx,, @)

where A, B, and C are trained using structured parameterizations,
ensuring stability and efficiency. However, previous SSM-based mod-
els, like S4 (Gu et al., 2021), required specialized initialization and
high-order recurrence operations, limiting their practical efficiency.
To address these limitations and improve the practical efficiency of
state-space-based time series modeling, Mamba was developed with
innovative features.

Selective Gating Mechanism for Mamba model. Mamba improves
upon standard SSMs by introducing an input-dependent gating func-
tion, which dynamically controls the state updates:

X431 = 6(Wu,) © (Ax, + Bu,), 8

where W is a gating matrix and ¢ is an activation function. u, denotes
the embedded input vector derived from the original multivariate time
series at step ¢, where its dimension m corresponds to the number of pre-
processed features. Specifically, in the SSM, y, = Cx, denotes the linear
mapping from the state to the output; while in the diffusion framework,
x, represents the noise sample at the rth step of the diffusion process.
These two variables are connected via €5(x,,t) = fyamba(*:»?), Where
y; serves as the denoising prediction target during the training phase.
This allows the model to adaptively adjust memory retention, improv-
ing efficiency for long sequences. Unlike Transformers, which require
quadratic complexity O(T?d) for attention computation, Mamba oper-
ates with linear complexity O(T'd), making it well-suited for large-scale
time series applications.

4. MambaDiffTS

This section presents the MambaDiffTS framework, which combines
Mamba’s selective state-space mechanism with a frequency-aware dif-
fusion process to enhance time series synthesis. Initially, we outline
the overall architecture, followed by a detailed explanation of the
spectral decomposition mechanism that augments the generative pro-
cess. Lastly, we introduce an adaptive diffusion scheduling strategy
specifically designed for time series data.
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Fig. 1. Frequency-Aware Diffusion Process in MambaDiffTS.

4.1. Model architecture

The MambaDiffTS framework consists of two key components:
The MambaDiffTS framework consists of two processes. Fig. 1 shows
a frequency-aware diffusion process, which separates the input sig-
nal into low-frequency trend and high-frequency seasonality through
Fourier decomposition, and dynamically adjusts the noise intensity
based on the frequency-band energy to balance the generation diversity
and time-series fidelity. This figure shows the diffusion process of
MambaDiffTS, which separates the input signal into low-frequency
trend and high-frequency seasonality through Fourier decomposition,
and dynamically adjusts the noise intensity (High/Low Noise) based on
the frequency band energy (8(f)) to balance the generation diversity
and time series fidelity. Fig. 2 presents a hierarchical state-space
model, where the matrices A, B, C, and D respectively represent the
state variable dynamics without input, the input’s effect on the state,
the mapping of the state to the output, and the input’s direct impact
on the output. In the state-space model part: A (State Matrix), n X n,
shows state variable dynamics without input; B (Input Matrix), n X m
shows input u’s effect on state x; C (Output Matrix), p X n, maps state
x to output y; D (Direct-Transmission Matrix), p X m, shows input u’s
direct impact on output y.

State-Space Sequence Modeling: Mamba serves as a sequence
modeling backbone within the diffusion framework, leveraging struc-
tured state-space updates to enhance temporal consistency.

Frequency-Aware Diffusion Process: The denoising process in-
corporates spectral decomposition to align noise scheduling with the
underlying temporal structure.

State-Space Representation via Mamba. Given a multivariate
time series input x = {x,x,,...,xp}, the goal is to learn a latent
representation that captures both short-term dynamics and long-range
dependencies. We employ an SSM as the core sequence model, defined
as:

X4 = Ax, + Bu,, y, = Cx,, )

where x, represents the hidden state, u, is the input, and y, is the
output. In Eq. (9), ¢ denotes the activation function in the gating
mechanism. We adopt the Swish activation function instead of ReLU,
as it can provide smoother gradients and avoid dead neurons. Com-
pared with ReLU, this choice reduces the prediction Mean Squared
Error (MSE) by approximately 0.03. Unlike conventional autoregres-
sive models, SSMs maintain structured state transitions, facilitating
efficient sequence modeling. Mamba enhances this representation by
incorporating input-dependent gating, modifying the state update rule
as:

X1 = 0(Wu,) © (Ax, + Bu,), (10)

where W is a learnable gating matrix, and ¢ is an activation function.
This allows the model to adaptively regulate information flow, preserv-
ing critical temporal dependencies while maintaining computational
efficiency.

Integration with Diffusion-Based Generation. In standard
DDPMs, the denoising network is parameterized as e,(x,,t), which
learns to estimate the noise component at each step. Instead of us-
ing conventional architectures, we incorporate Mamba within this
framework:

€9(x1, 1) = fMamba (X1, D)- 11)

By leveraging selective state-space transitions, this design effi-
ciently processes long sequences, preserving fine-grained temporal
structures during the generative process. To provide a quantitative
benchmark, we report the theoretical computational complexity of
MambaDiffTS in comparison to its Transformer-based and RNN-based

counterparts. Specifically, the selective state space update in MambaDiffTS

achieves a linear complexity O(T'd), whereas self-attention models ex-
hibit a quadratic complexity O(T%d), and LSTM-based recurrent models
have a O(T?) complexity.
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Fig. 2. Hierarchical State-Space Modeling in MambaDiffTS.

4.2. Frequency-aware spectral decomposition for long-horizon pattern mod-
eling

Real-world time series data exhibit multi-scale structures, where
trend and seasonal components co-exist across different frequency
ranges. Standard diffusion formulations treat all frequencies equally,
leading to potential distortions in generated sequences. To address this,
we introduce a Fourier-based decomposition module, which explicitly
separates frequency components before applying the denoising process.

Fourier Basis Decomposition. Given a time series x,, we apply a
Discrete Fourier Transform (DFT) to obtain its spectral representation:

T-1
X(f)= Y xe 2, 12)
=0

To distinguish low-frequency trend components from high-
frequency seasonal components, this process can be defined as:

Xiow() = X(N) - 1<z XnignlH) = X() - gy as)

where f,. is an adaptive cutoff threshold. Applying an inverse Fourier
transform (IFT), this process can be defined as:

Xiow(®) = T~ [Xiow ()] Xigh®) = T~ [Xpigh(/)]. (14)

This decomposition enables independent modeling of global trends
and local fluctuations, preventing noise distortions in critical signal
components.

State-Space Regularization in Frequency Domain.To further en-
hance generative quality, we constrain Mamba’s hidden state initializa-
tion to align with the decomposed frequency components:

x0 = WiowX1ow + Whigh Xhigh- 15)

The overall training loss incorporates a frequency-regularized con-
straint:

— pred true | 2 pred true 12
Efreq - llowllxlow - Xlow -+ )*high”Xhigh - Xhigh” . 16)

In EqQ. (16), Ajgy and Apigp are fixed weights determined via validation
(default settings: 1oy = 1.0, Aygn = 0.5), which balance the relative im-
portance of long-term trends and short-term fluctuations. These weights
are independent of 4 in Eq. (18); specifically, Ajo,, and Ay, govern the
frequency-domain reconstruction loss and regulate the adaptive noise
scheduling in the diffusion process.

This ensures that both low- and high-frequency patterns are faith-
fully reconstructed, enhancing realism and interpretability in the gen-
erated sequences.

4.3. Adaptive diffusion scheduling

Standard DDPMs rely on a fixed noise schedule g,, which does
not account for the non-stationary characteristics of time series. We
propose a spectral energy-based noise scheduling strategy, where the
noise variance dynamically adjusts based on frequency-dependent sig-
nal strength.

Spectral Energy-Based Noise Scaling. For a given time series, we
compute the instantaneous spectral energy at step t:

E =Y XN a7

f
Instead of a uniform noise schedule, we redefine the variance as:

E
b= ﬂbase : <1 +v ! > s (18)

max(E)

where y controls the degree of noise adaptation. This ensures that
high-energy regions receive lower noise levels, preserving meaningful
structures while allowing sufficient randomness for generative diver-
sity. Eq. (18) defines the adaptive noise variance as a function of
the normalized spectral energy. Intuitively, when the instantaneous
spectral energy is high (e.g., reflecting critical structures such as peak
hours), the noise variance decreases to preserve fidelity; conversely,
in low-energy regions, stronger noise enhances diversity. This design
ensures that the denoising process strikes a balance between temporal
fidelity and generative variability. Across all experiments, the scaling
factor y is set to 0.3. This value strikes a practical balance: values below
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ID Domain Data structure File format #Data points #Dimensions Time interval
0 ETThl (=/-/-) txt 17 420 7 1h

1 ETTh2 + /=/-) csv 17 420 7 1h

2 ETTm1 + /=/-) csv 69680 7 15 min

3 ETTm2 + /=/-) csv 69 680 7 15 min

4 Company Values + /=/=) csv 17528 6 Daily

5 GC (=/=/-) xlsx 2880 8 15 min

6 GJ (=/-/-) xlsx 2880 4 15 min

7 MC (-=/=/-) xlsx 5760 4 15 min

8 MJ (=/-/-) xlsx 4320 4 15 min

0.2 suppress generative diversity, while values above 0.5 lead to over-
smoothing of high-frequency traffic dynamics. Consequently, y = 0.3
effectively preserves both the fidelity and diversity of the generated
sequences.

Information-Theoretic Justification. To formalize this strategy,
we analyze the entropy evolution during the diffusion process. The
entropy of a time series at step 7 is:

S, ==Y B()log P/, 19)
f

where P,(f) is the normalized spectral power distribution. By adjust-
ing p, adaptively, we maintain a bounded entropy increase, prevent-
ing excessive information degradation and ensuring stable generative
performance.

5. Experiment result and analysis

This section presents the empirical evaluation of MambaDiffTS
across multiple real-world time series datasets. This section first out-
lines the datasets utilized in the study, followed by the presentation of
evaluation metrics and selected baseline models. Subsequently, detailed
quantitative and qualitative analyses are provided, which demonstrate
the efficacy of the proposed approach in time-series generation tasks.

5.1. Datasets

This study employed multiple datasets, as detailed in Table 1, to
evaluate the proposed method, comprising both real-world and simu-
lated data sources. To rigorously evaluate the model’s generalization
capability, experiments are conducted across diverse domains: financial
markets (stock data), urban transportation (traffic flow), and industrial
systems (ETTh). The stock dataset comprises daily records from 2010
to 2021 for six major technology companies, with each observation
containing six features: opening price, closing price, high value, low
value, volume, and adjusted closing value. The traffic flow dataset was
collected from four monitoring sites in Shandong Province, China. Data
collection was carried out at 15 min intervals. The dataset captures
five key attributes, which are related to road congestion and vehicle
dynamics. The ETTh (Electricity Transformer Temperature and Load)
dataset recorded critical power system metrics, including load and
oil temperature (OT), at 15 min resolutions over multiple years. This
multi-domain validation ensures robustness in handling heterogeneous
temporal patterns, from high-frequency financial volatility to long-term
infrastructure monitoring signals.

The stock dataset is sourced from six companies: Apple, Google
Inc., Amazon.com, Tesla Inc.,, and Microsoft. It encompasses daily
records spanning from 2010 to 2021, featuring the following attributes:
ticker_symbol, day_date, close_value, volume, open_value, high value,
and low_value. This dataset holds significant value for financial market
trend modeling.

Fig. 3 shows the trends of the opening and closing prices of six
major technology companies (AAPL, AMZN, GOOGL, GOOG, MSFT,
TSLA) between 2010 and 2021. Through the visual analysis over a
long time span, the volatility characteristics and periodic patterns of

the stock prices of each company can be observed. For example, Tesla
(TSLA) showed a significant upward trend after 2019, while Apple
(AAPL) exhibited a composite pattern of relatively stable long-term
growth and short-term fluctuations. This figure validates the existence
of nonlinear dynamics and high-dimensional features in financial time
series, providing an intuitive basis for the model to capture complex
market behaviors.

The traffic flow dataset utilized in this study comprises high-
resolution traffic flow observations collected from major urban inter-
sections in Linyi City, Shandong Province, China, with a particular
emphasis on the Industrial Avenue-Jucai Road corridor and its adjacent
arterial segments. Covering the period from May 1, 2024, to March
4, 2025, the dataset records multi-scale temporal resolutions (5-, 30-
, and 60 min intervals), thereby enabling a detailed examination of
both short-term fluctuations and long-term trends in vehicular mobility.
Instances with zero values in the raw records indicate sensor mal-
functions and, together with other missing entries, were systematically
corrected through linear interpolation to maintain temporal continu-
ity and statistical reliability. For model development, the dataset is
partitioned into training (70%), testing (20%), and validation (10%)
subsets, ensuring rigorous evaluation under diverse congestion patterns
and temporal heterogeneities. This curated dataset thus offers a rep-
resentative empirical foundation for benchmarking traffic prediction
methods in real-world urban mobility contexts. Fig. 4 presents the
traffic flow data of four monitoring stations (GC, GJ, MC, MJ) in
Shandong Province, China. Each subgraph records the traffic dynamic
characteristics of different stations at a 15 min granularity, including
key indicators such as the degree of road congestion and the dis-
tribution of vehicle speeds. For example, the GC station showed a
significant surge in traffic flow during the morning and evening rush
hours, while the MJ station exhibited low traffic volume at night and
periodic fluctuations on weekends. These data characteristics highlight
the multi-scale dependence and spatio-temporal heterogeneity of traffic
flow, providing an experimental basis for the model to verify its ability
to model short-term sudden patterns and long-term trends. For traffic
flow datasets (e.g., MJ), missing values are relatively sparse. To avoid
the bias introduced by linear interpolation when capturing abrupt
fluctuations, we adopt a short-window median imputation method to
fill small gaps (with < 3 consecutive missing points) and remove rare
long-gap segments. The processed sequences are then normalized to
have zero mean and unit variance. Since Eq. (12) relies on Fourier
decomposition, excessive smoothing during preprocessing may distort
the high-frequency band Xp;ep,. By using robust imputation (based on
the median) instead of linear interpolation, the integrity of short-term
peak-hour fluctuations and weekend patterns in Xj,p, is preserved.

To further assess the generalizability of the proposed method across
diverse traffic scenarios, we incorporate three widely adopted public
datasets from the Performance Measurement System (PEMS) bench-
mark, which are extensively employed in traffic flow prediction re-
search. Specifically, we select PEMS-Bay, PeMS-METR-LA, and
PEMSO08, each distinguished by unique scales and spatiotemporal char-
acteristics. As detailed in Table 2, these datasets differ in terms of time
steps, node counts, and edge connections, providing a robust basis for
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Fig. 3. Trends of Opening and Closing Prices of Six Major Technology Stocks (AAPL, AMZN, GOOGL, GOOG, MSFT, TSLA) from 2010 to 2021.

Table 2

Datasets statistics.
Datasets Time steps Nodes Edges
PEMS-BAY 52116 325 2369
METR-LA 34272 207 1515
PEMS08 17 856 170 1902

Table 3

Model hyperparameter settings.

Datasets Epoch Batchsize Learning rate
PEMS-BAY 200 64 0.0001
METR-LA 200 64 0.0001
PEMS08 200 64 0.0001

evaluating the model’s adaptability and performance across heteroge-
neous traffic environments. The inclusion of these public benchmarks
enhances the empirical analysis, ensuring that the results are both
reliable and applicable to real-world traffic prediction tasks.

A parameter study is carried out to explore the influences of hyper-
parameters on the model. The selected hyperparameters in this study
are presented as follows:

(1) Epoch: It represents the number of complete passes through the
entire training dataset, with a fixed value of 200 in this experiment.

(2) Batchsize: It is the number of samples processed in one iteration,
and the value is uniformly set to 64 for all datasets.

(3) Learning rate: It determines the step size at each iteration
while moving toward a minimum of a loss function, and the value is
consistently 0.0001 for all datasets (see Table 3).

The ETT dataset (including ETThl, ETTh2, ETTm1, and ETTm2)
is an electricity transformer dataset that records key power system
metrics over time. The dataset consists of two granularities: hourly
(ETTh) and 15 min intervals (ETTm). It captures crucial variables such
as electricity load and oil temperature. Fig. 5 shows the time series
trends of the oil temperature (OT) indicator in the ETT dataset (ETTh1,
ETTh2, ETTm1, ETTm2). By comparing the changes in OT in different
datasets (at hourly and 15 min granularities), a strong correlation be-
tween the load of power transformers and temperature can be observed.
For example, the OT in ETTh1 showed periodic peaks in summer, which
were consistent with the peak power demand; while the high-frequency
data in ETTm2 revealed the fine-grained dynamics of temperature fluc-
tuations with the load. This figure validates the representativeness of
the ETT dataset in modeling the multi-scale time series characteristics
of industrial systems, providing a crucial benchmark for evaluating the
robustness of the model in complex non-stationary signals.

Other datasets cover a range of additional time series tasks, ensuring
the robustness of our model across different domains.

5.2. Evaluation metrics

To assess model performance, we use six widely adopted metrics:

Kolmogorov-Smirnov (KS) Test: The KS test is a statistical test
used to compare the cumulative distributions of two datasets. It eval-
uates the largest absolute difference between the empirical cumulative
distribution functions (CDF) of the observed and predicted values. A
smaller KS statistic indicates a better fit between the two distributions.
Mathematically, the KS statistic is defined as shown in Eq. (20):

KS = max [Xiye(x) = Xpred ()] (20)

Anderson-Darling (AD) Test: The AD test evaluates how well the
generated data matches the true data distribution, with more emphasis
on the tails of the distribution. A smaller AD statistic indicates a better
fit. The AD statistic is defined as presented in Eq. (21):

AD=-n-35,. (21)

MSE: MSE measures the average squared differences between the
true values and the predicted values. A lower MSE indicates better
model performance, as it means the predictions are closer to the actual
values. It is defined as per Eq. (22):

R R
MSE = — 3 (v = 5,)°. (22)
t=1

Mean Absolute Error (MAE): MAE calculates the average absolute
differences between the true values and the predicted values. Unlike
MSE, MAE treats all errors equally, making it less sensitive to large
errors. Its formula is given Eq. (23):

n
1
MAE = - -9l 23
n;b’t Wil (23)

Root Mean Squared Error (RMSE): RMSE is the square root of
the average squared differences between the true and predicted values.
It is sensitive to large errors, making it useful when large errors are
undesirable. The Root Mean Squared Error (RMSE) is the square root of
the average squared differences between the true and predicted values,
as defined in Eq. (24):

RMSE = @4

5.3. Baseline models and experimental setup

5.3.1. Models for comparison

In the comparative analysis, a selection of state-of-the-art models
and algorithms was rigorously evaluated against the proposed frame-
work to assess its relative performance and efficacy.
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Fig. 4. Traffic flow of GC, GJ, MC, MJ datasets.

» Traditional Generative Models:TimeGAN (Yoon et al., 2019),
VAE (Cho et al., 2014), CSDI (Tashiro et al., 2021).

- Diffusion-Based Models: DDPM, TimeGrad.

» Other Sequence Models: LSTM, BiLSTM, CLSTM.

5.3.2. Experiment configuration

All experiments in this paper were conducted on a single computer
with Winl10 64-bit operating system, 13th Gen Intel(R) Core(TM) i5-
13600KF 3.50 GHz, NVIDIA GeForce RTX 2060 GPU and 16 GB of RAM
host computer running the generated programs. Data processing and
enhancement was performed through Python 3.12.2.

To determine the optimal hyperparameters for the denoising dif-
fusion probabilistic model-specifically, the variance parameters {f, €
0, 1)},’f=1 and the number of diffusion steps K-a series of parameter
selection experiments were conducted. Using the traffic road network
dataset from Linyi City as a case study, historical data spanning one
hour was utilized to predict road speed sequences over various fu-
ture time steps. Different combinations of g, € 0.1,0.2,0.3,0.4 and
K € 50,100,150 were evaluated. The optimal parameter set, which
demonstrated the best performance, was selected for subsequent exper-
iments. The specific parameter configurations tested for the MambaD-
iffTS model in forecasting speed sequences over 15, 30, and 60 min on
the Linyi City dataset are summarized in Table 4.

5.4. Results and analysis

This section presents the experimental results comparing the pro-
posed MambaDiffTS model with baseline models. A comprehensive
analysis is conducted using multiple evaluation metrics and perfor-
mance perspectives to systematically demonstrate the effectiveness of
MambaDiffTS in time series generation tasks.

5.4.1. Comparison of models based on KS and AD (goodness-of-fit tests)

In this part, we evaluate the models’ goodness-of-fit by comparing
the distribution of the generated time series with the true time series
using the KS test and AD test. These metrics evaluate the degree of
alignment between the predicted data and the actual data distribution.
For the statistical tests in Table 5, the KS and AD metrics are computed
on the denoised generated samples to ensure comparability with the
real distribution. The significance threshold is set to p < 0.05, and the
results reported in Table 5 consistently meet this criterion, indicating
that the improvements are statistically significant.

The distributional alignment between generated and real time series
is evaluated using KS and AD tests. As evidenced in Table 5, superior KS
and AD statistics are achieved by MambaDiffTS across multiple datasets
(GC, GJ, MC, MJ). For instance, on the GC dataset, KS and AD values of
0.453 + 0.004 and 0.174 + 0.003 are recorded by MambaDiffTS, demon-
strating significant improvements over comparative models including
TimeGAN, VAE, and CSDL
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Fig. 5. Time-Series Trends of OT in Different ETT Datasets.

Table 4
CRPS-based hyperparameter settings of MambaDiffTS model for predicting different steps on ETTh datasets.
Parameters 15 min 30 min 60 min
ETT ETT ETT ETT ETT ETT ETT ETT ETT ETT ETT ETT
hl h2 ml m2 hl h2 ml m2 hl h2 ml m2
(0.1.50) 0.105 0.078 0.172 0.139 0.117 0.090 0.186 0.151 0.129 0.099 0.204 0.166
(0.2.50) 0.102 0.080 0.168 0.137 0.114 0.092 0.182 0.149 0.126 0.101 0.200 0.164
(0.3.50) 0.100 0.083 0.164 0.134 0.112 0.095 0.178 0.146 0.124 0.104 0.196 0.161
(0.4.50) 0.097 0.086 0.159 0.129 0.109 0.098 0.173 0.141 0.121 0.107 0.191 0.156
(0.1.100) 0.094 0.084 0.155 0.124 0.106 0.096 0.169 0.136 0.118 0.105 0.187 0.151
(0.2.100) 0.091 0.081 0.150 0.117 0.103 0.093 0.164 0.129 0.115 0.102 0.182 0.144
(0.3.100) 0.092 0.084 0.152 0.119 0.104 0.096 0.166 0.131 0.116 0.105 0.184 0.146
(0.4.100) 0.089 0.082 0.148 0.114 0.101 0.094 0.162 0.126 0.113 0.103 0.180 0.141
(0.1.150) 0.090 0.084 0.150 0.116 0.102 0.096 0.164 0.128 0.114 0.105 0.182 0.143
(0.2.150) 0.088 0.086 0.147 0.112 0.100 0.098 0.161 0.124 0.112 0.107 0.179 0.139
(0.3.150) 0.087 0.089 0.145 0.109 0.099 0.101 0.159 0.121 0.111 0.110 0.177 0.136
(0.4.150) 0.086 0.091 0.143 0.098 0.096 0.101 0.155 0.108 0.106 0.111 0.171 0.119
Table 5

Comparison of generated return distributions with observed data. The KS and AD statistics are bounded at 0/1 and 0.01/0.25,
respectively, with higher values indicating better goodness of fit. The variation in test statistics across multiple runs is presented

as a + range.

Model GC GJ MC MJ

KS AD KS AD KS AD KS AD
TimeGAN 399 406 1244 o, 283+ g6 108+ o 430 o0, 146 o, 365+ 405 145 g0
VAE 237+ o4 102+ g6 186+ o7 069 05 248 05 097+ 47 283 406 L0952 g0
CSDI 256+ 403 106+ 00 256 04 079+ 03 367+ 06 124 05 340 97 103+ o3
MambaDiffTS 453+ g0, 174+ 405 347+ g0, 129+ 30 543+ o 198+ (03 A58+ 03 175+ 403

The distributional alignment between the generated and real time
series is evaluated using the KS and AD tests. As shown in Table 6,
MambaDiffTS consistently achieves superior KS and AD statistics across
multiple datasets (PEMS-Bay, METR-LA, and PEMS08). For example, on
the PEMS-Bay dataset, MambaDiffTS records a KS value of 0.458 +0.004
and an AD value of 0.179 + 0.003, outperforming other models such
as TimeGAN, VAE, and CSDI. Similarly, in METR-LA and PEMS08

10

datasets, MambaDiffTS also shows significant improvements in both KS
and AD metrics compared to the baseline models. This demonstrates
that MambaDiffTS excels at maintaining the distributional fidelity of
the time series, providing better alignment with real-world data.
These results indicate that closer approximation to the true data dis-
tribution is achieved by MambaDiffTS, with intrinsic temporal patterns
being more accurately captured. Consequently, time series exhibiting
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Table 6
Generated return distributions compared to observed data in public datasets PEMS-Bay, METR-LA, and PEMS08.
Model PEMS-Bay METR-LA PEMS08
KS AD KS AD KS AD
TimeGAN 404 g0 129+ 04 288+ 06 113+ oy 435+ o4 151 g0y
VAE 242 g4 107+ 406 191+ o7 074 05 253 405 102 7
CSDI 261+ 3 A1+ o, 261+ 04 084+ (3 372+ 06 17+ 03
MambaDiffTS A58+ o4 179+ 03 352+ 004 134+ oy 548+ 0, 203 403
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Fig. 6. Comparison of performance of multiple models on multiple datasets with the variation of synthetic proportion based on the TMTR method.

higher fidelity to real-world dynamics are generated through the pro-
posed approach. Training on Mixture, Test on Real (TMTR). The TMTR
paradigm is critical for evaluating diffusion-based time series mod-
els trained on hybrid datasets combining real observations with syn-
thetic/augmented samples (e.g., diffusion-generated sequences). This
protocol rigorously assesses whether synthetic data complements real
data by preserving temporal fidelity or introduces distributional shifts,
particularly in low-data regimes. In the proposed framework, MambaD-
iffTS employs TMTR to validate that Mamba’s state-space backbone,
when trained on mixed real and diffusion-augmented data, general-
izes to real-world benchmarks (e.g., ETTh electricity load data). By
decoupling synthetic data’s contribution during training from real-test
performance, TMTR reveals trade-offs between diversity and temporal
consistency, guiding optimal data augmentation strategies.

Training on Augmentation, Test on Real (TATR). The TATR
setup probes the sim-to-real gap in time series generation by training
MambaDiffTS exclusively on diffusion-augmented data (no real training
samples) and evaluating on real-world sequences. This tests two key
hypotheses: (1) whether Mamba’s selective state transitions mitigate
noise-induced temporal distortions common in Transformer-based dif-
fusion, and (2) if spectral decomposition preserves multi-scale patterns

11

(trend/seasonality) under synthetic training. TATR is especially rele-
vant for domains like traffic flow prediction, where real data is sparse
but simulated trajectories are abundant. Our results demonstrate that
Mamba’s linear-time denoising outperforms autoregressive diffusion
(TimeGrad (Rasul et al., 2021)) in TATR.

In TMTR framework, experiments are conducted with MambaDiffTS
across varying synthetic data ratios. As shown in Fig. 6 and 7, consistent
performance superiority over comparative models is maintained by
MambaDiffTS despite changes in synthetic data augmentation scale.
These findings confirm that, during hybrid data training, Mamba’s
state—space backbone can be effectively extended to real-world bench-
marks. To further evaluate robustness under anomalous conditions, we
conduct case studies on traffic flow and stock datasets. For the MJ
traffic dataset, weekend peaks and holidays are considered anomalous
fluctuations. MambaDiffTS successfully preserves these abrupt changes
and maintains a lower MSE compared to baselines, which typically
over-smooth peak-hour patterns. Similarly, in the stock dataset, the
sharp upward trend of Tesla (post-2019) is treated as a real-world
anomalous event. Compared with LSTM-based models, our model cap-
tures this state transition more accurately, whereas the former exhibits
delayed adaptability. These findings demonstrate that MambaDiffTS
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Fig. 7. Comparison of performance of multiple models on multiple datasets with the variation of synthetic proportion based on the TARA method.

can handle non-stationary and anomalous patterns in real-world scenar-
ios. This not only showcases its superiority in harmonizing the diversity
of synthetic data with temporal consistency but also offers valuable
insights for formulating data augmentation strategies.

In TATR evaluation, superior linear-time denoising performance
is achieved by MambaDiffTS when trained exclusively on diffusion-
augmented data and evaluated on real sequences, outperforming
transformer-based autoregressive diffusion models (e.g., TimeGrad).
This indicates that temporal distortion induced by noise is effectively
mitigated through Mamba’s selective state transitions, while multi-
scale patterns are better preserved during synthetic training through
spectral decomposition. These properties are particularly advantageous
for domains like traffic flow prediction where real data is sparse but
simulated trajectories are abundant.

5.4.2. Comparison of models based on MSE and MAE (forecasting accu-
racy)

The second part of the analysis compares the forecasting accuracy
of the models using MSE and MAE. These metrics are commonly used
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to assess the accuracy of predictions. The results for this part are shown
in Table 7:

The prediction accuracy is evaluated using MSE and MAE. As
demonstrated in Table 7, lower MSE and MAE values are consis-
tently observed for MambaDIiffTS across different ETT datasets (ETTh1,
ETTh2, ETTm1, ETTm2) and varying time intervals (15 min, 30 min,
60 min). Specifically, on the ETTh1l dataset with 15 min intervals, an
MSE of 0.351 and an MAE of 0.361 are achieved by MambaDiffTS,
outperforming both DDPM and TimeGrad. These results suggest that
more accurate approximations of ground truth values are obtained by
MambabDiffTS in time series forecasting, with predictions being closer
to actual observations. A clear advantage in prediction accuracy is thus
demonstrated by the proposed approach.

5.4.3. Comparison of models based on MSE, MAE and RMSE (long-term
forecasting performance)

In the final part of the analysis, we evaluate the models’ long-term
forecasting performance using MSE, MAE and RMSE. These metrics are
used to assess how well the models maintain accuracy over extended
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Table 7
MSE and MAE evaluation of MambaDiffTS, DDPM, and TimeGrad Models across different ETT datasets and time intervals.
Model MambaDiffTS DDPM TimeGrad
MSE MAE MSE MAE MSE MAE
15 min 0.351 0.361 0.413 0.456 0.365 0.430
ETTh1 30 min 0.395 0.395 0.485 0.463 0.449 0.447
60 min 0.418 0.419 0.469 0.452 0.431 0.472
15 min 0.287 0.313 0.314 0.386 0.269 0.368
ETTh2 30 min 0.331 0.360 0.438 0.432 0.394 0.414
60 min 0.336 0.386 0.409 0.429 0.367 0.447
15 min 0.378 0.340 0.437 0.471 0.369 0.421
ETTm1l 30 min 0.348 0.362 0.523 0.466 0.446 0.434
60 min 0.390 0.413 0.506 0.466 0.456 0.481
15 min 0.191 0.238 0.221 0.336 0.182 0.297
ETTm2 30 min 0.216 0.276 0.271 0.326 0.249 0.313
60 min 0.269 0.320 0.304 0.342 0.279 0.356
Table 8
Error Evaluation (MSE, RMSE, MAE) of Multiple Models for AAPL, AMZN et al. Stock Data.
Model LSTM BiLSTM CLSTM MambaDiffTS
MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE
AAPL 0.222 0.471 0.320 0.156 0.395 0.251 0.193 0.439 0.289 0.127 0.356 0.229
AMZN 0.239 0.489 0.324 0.141 0.376 0.258 0.196 0.443 0.281 0.135 0.367 0.214
GOOGL 0.253 0.503 0.343 0.187 0.432 0.230 0.208 0.456 0.258 0.119 0.345 0.198
GOOG 0.286 0.535 0.334 0.159 0.399 0.202 0.210 0.459 0.255 0.129 0.360 0.185
MSFT 0.269 0.518 0.319 0.168 0.410 0.221 0.222 0.471 0.273 0.134 0.366 0.196
TSLA 0.265 0.515 0.321 0.170 0.412 0.225 0.211 0.459 0.263 0.125 0.354 0.191

forecasting horizons. The results are presented in Table 8 and Fig. 8,
which comprehensively illustrate the performance of different models
in long-term forecasting tasks.

The long-term forecasting performance is evaluated using MSE,
MAE, and RMSE. As shown in Table 8 and Fig. 8, lower MSE, RMSE,
and MAE values are consistently achieved by MambaDiffTS compared
to baseline models (LSTM, BiLSTM, and CLSTM) across multiple stock
datasets, including AAPL and AMZN, in long-term forecasting tasks.
Specifically, when forecasting AAPL stock prices, the MambaDiffTS
model yields a MSE of 0.127, a RMSE of 0.356, and a MAE of 0.229.
These results represent a substantial improvement compared to com-
peting models. The lower MSE value indicates that, on average, the
squared differences between the predicted and actual AAPL stock prices
are significantly reduced. Similarly, the relatively low RMSE, which is
sensitive to large errors, and MAE values further confirm that MambaD-
iffTS can more accurately approximate the actual stock price values.
These performance metrics suggest that MambaDiffTS outperforms its
counterparts in capturing the complex dynamics of AAPL stock price
movements, thus providing a more reliable and accurate forecasting
approach. These results indicate that higher prediction accuracy is
maintained by MambaDiffTS in long-horizon forecasting, with pre-
diction errors being effectively reduced. The observed performance
advantage suggests that MambaDiffTS is particularly well-suited for
long-term trend analysis and forecasting in time series applications.

5.5. Ablation study

To further demonstrate that the full model outperforms simplified
versions, the performance of modelvariants with different modules
removed is shown in Fig. 9, and 10. Where different variations are listed
as followed:

w/0 Mamba Backbone: Replace Mamba with Transformer en-
coder.

w/0 Frequency Decomposition (No-Freq): Remove Fourier-
based separation, directly applying diffusion.

w/0 Adaptive Noise Scheduling (Fixed-f): Use a fixed linear
variance schedule instead of spectral energy-based scaling.

Full Model: The complete MambaDiffTS with all modules.
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The results demonstrate that the full model outperforms all its
abbreviated versions, highlighting the contribution of each component
to the overall performance improvement.

6. Discussion & conclusion
6.1. Discussion

The experimental findings indicate that MambaDiffTS achieves su-
perior performance across a diverse array of time series forecasting
tasks, establishing itself as a state-of-the-art model. This success is
attributed to three key innovations: Mamba’s efficient linear-time selec-
tive state transitions, which dynamically prioritize essential temporal
dependencies; the frequency-aware spectral decomposition mechanism,
which effectively distinguishes between trend and seasonal compo-
nents; and the adaptive noise scheduling guided by spectral energy. To-
gether, these advancements address the limitations of existing method-
ologies, particularly in terms of balancing computational efficiency
with generative fidelity.

MambaDiffTS presents notable advantages in terms of efficiency
without compromising accuracy. Its linear computational complexity
facilitates the processing of extensive sequences, such as financial
datasets exceeding 1000 time steps, more efficiently than models like
Transformers, which encounter quadratic computational overhead. In
addition to its computational efficiency, the model demonstrates a
23% reduction in MSE compared to TimeGrad. The selective gating
mechanism employed by MambaDiffTS enables it to concentrate on
high-energy temporal regions — such as volatility spikes in stock prices
— while attenuating noise during stable intervals. This capability is
particularly valuable in contexts such as industrial IoT, where it is
crucial to preserve sparse but critical sensor events.

A significant advantage of MambaDiffTS lies in its capacity to
maintain multi-scale structures within time series data. The frequency-
aware spectral decomposition method effectively addresses a pivotal
challenge in diffusion-based time series generation, specifically the
deterioration of fine-grained seasonal patterns caused by isotropic noise
injection. By synchronizing the noise scheduling with the frequency
energy of the data, the model adeptly captures both long-term trends
and short-term fluctuations. This methodology is substantiated by its
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Fig. 8. Error metric analysis (MSE, RMSE, MAE) of different models for AAPL, AMZN et al. Stock datasets.

superior performance in statistical evaluations, such as the KS and AD
tests, where MambaDiffTS surpasses conventional models like CSDI in
reconstructing high-fidelity temporal patterns.

Currently, MambaDiffTS relies solely on endogenous time series
signals. While this design highlights the inherent predictive capability
of the framework, incorporating exogenous variables (e.g., weather
conditions, holiday events, or policy changes) could further enhance

its practical application value. Additionally, real-time inference poses
challenges due to the iterative denoising nature of the diffusion pro-
cess, which incurs substantial memory usage and high computational
costs. Future research may explore efficient approximation methods
(e.g., reducing diffusion steps, knowledge distillation, or quantization)
to enable real-time deployment in resource-constrained environments.
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Fig. 10. Comparison of performance metrics across ablation study on ETTm1.

Furthermore, the model has lower computational costs compared
to other methods. However, the diffusion process is memory-intensive.
This characteristic restricts the model’s real-time deployment on
resource-constrained devices like IoT sensors. Additionally, the inher-
ent stochasticity of the diffusion process complicates interpretability,
thereby making causal analysis more challenging in sensitive applica-
tions such as healthcare.

Nevertheless, the framework demonstrates considerable potential
for practical applications across various domains. In the realm of fi-
nancial risk management, it offers the capability to improve stress
testing by generating realistic market scenarios independent of his-
torical extremes. In the context of smart infrastructure, particularly
in traffic flow prediction, its proficiency in maintaining hourly and
daily patterns can support dynamic congestion pricing and route op-
timization. Additionally, within energy systems, the model’s capacity
to accurately reconstruct electricity load trends can enhance proactive
grid management, particularly in the integration of renewable energy
sources characterized by intermittent generation.

Future works prioritize the development of enhanced model adapt-
ability to complex non-stationary signal characteristics, potentially
through implementing learnable frequency-adaptive mechanisms or in-
vestigating multiscale wavelet transform frameworks. Methodological
advancements like these have the potential to improve generaliza-
tion across temporal regimes with changing spectral properties. In
terms of deployment on edge devices, MambaDiffTS currently faces
challenges, as the diffusion process-characterized by its iterative nature-
requires substantial memory and computational resources. To address
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this issue, future work will focus on lightweight optimization strate-
gies, including reducing parameter overhead via model compression
(e.g., pruning, quantization, knowledge distillation) and lowering infer-
ence latency through techniques that reduce diffusion steps (e.g., accel-
erated samplers or adaptive noise scheduling). This technical roadmap
is expected to make MambaDiffTS more suitable for real-time appli-
cations on resource-constrained edge devices. Additionally, incorporat-
ing causal mechanisms, such as Granger causality, into the diffusion
process may improve interpretability and facilitate more transparent
decision-making in critical applications.

6.2. Conclusion

In this study, we introduce MambaDiffTS, an innovative framework
that amalgamates Mamba’s state-space model with a frequency-aware
diffusion process to achieve high-fidelity time series generation. By
integrating linear-time complexity with spectral energy-guided noise
scheduling, the framework effectively addresses the dual challenges
of scalability and temporal fidelity. To validate the effectiveness of
our proposed method across real-world scenarios with distinct char-
acteristics, we conduct extensive experiments on three representative
benchmark datasets spanning financial, industrial, and climate do-
mains. Specifically, these benchmarks include financial volatility pre-
diction datasets, industrial IoT sensor time series, and climate modeling
datasets; comprehensive evaluations on such diverse tasks consistently
demonstrate the superior performance of MambaDiffTS over existing
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baselines. In addition,future work may focus on integrating exter-
nal factors,such as weather, points of interest (POIs), and periodic
events, into MambaDiffTS to promote the development of more efficient
transportation systems.
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