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Zero-Shot Object Counting With Vision-Language
Prior Guidance Network
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Abstract— The majority of existing counting models are
designed to operate on a singular object category, such as
crowds or vehicles. The emergence of multi-modal foundational
models, e.g., Contrastive Language-Image Pre-training (CLIP),
has paved the way for class-agnostic counting. This approach
facilitates the counting of objects across diverse classes within a
single image based on textual indications. However, class-agnostic
counting models based on CLIP confront two primary challenges.
Firstly, the CLIP model exhibits limited sensitivity towards
location information, which prioritizes global content over the
precise localization of objects. Therefore, directly employing
the CLIP model is regarded as suboptimal. Secondly, these
models commonly employ frozen pre-trained vision and language
encoders while disregarding potential misalignment within the
constructed hypothesis space. In this paper, we propose a unified
framework, named the Vision-Language Prior Guidance (VLPG)
Network, to tackle these two challenges. The VLPG consists of
three key components, namely the Grounding DINO module,
Spatial Prior Calibration (SPC) module, and Object-Centric
Alignment (OCA) module. The Grounding DINO module utilizes
the spatial-awareness capability of extensive pre-trained object
grounding models to incorporate the spatial position as an addi-
tional prior for a particular query class. This adaptation enables
the network to concentrate more precisely on the exact location
of the objects. Meanwhile, the SPC module is built to extract
the long-range dependencies and local regions of the spatial
position. Additionally, to align the feature space across different
modalities, we design an OCA module that condenses textual
information into an object query which serves as an instruction
for cross-modality matching. Through the collaborative efforts
of these three modules, multimodal representations are aligned
while maintaining their discriminative nature. Comprehensive
experiments conducted on various benchmarks validate the
effectiveness of the proposed model.

Index Terms— Zero-shot object counting, multi-modal foun-
dational model, vision-language prior guidance network,
cross-modality.
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I. INTRODUCTION

IN THE past decades, object-specific counting has played
a considerable role in many real-world applications [1],

[2], [3]. Nonetheless, current models frequently encounter
difficulties in extending to new object categories not seen
during training, which limits their practicality across various
real-world contexts [4], [5], [6]. Therefore, there is an urgent
need for a versatile counting model that can adjust to unseen
categories and provide corresponding density estimates [7],
[8], [9].

This demand has resulted in the emergence of class-agnostic
counting models [10], [11], [12]. These models adopt a
unified/shared approach to estimate the quantity and density
of objects within a given image, as depicted in Fig. 1-(a).
By annotating specific image patches as exemplars and sub-
sequently assessing the similarities between these exemplars
and various image regions, these models have demonstrated
notable generalization and counting accuracy. However, the
majority of class-agnostic counting methods rely on the unre-
alistic assumption that object bounding boxes are available
during inference, which is not realistic in practical application.
Consequently, they necessitate users to manually annotate
certain object samples for counting, which can be cumbersome
and time-consuming. Moreover, the substantial intra-class vari-
ability among query objects may lead to biased counts [12],
[13]. To tackle these issues, reference-less counting methods
have been proposed to detect and count salient objects without
annotations during inference [14], [15]. Although these meth-
ods alleviate the need for manual annotation, they struggle
to specify the object category of interest in the presence
of multiple categories, as illustrated in Fig. 1-(b). Overall,
existing counting models exhibit relatively limited flexibility
and are challenging to apply in real-world scenarios.

Contrastive Language-Image Pre-training (CLIP) [16] is
an effective and scalable method. It utilizes natural language
supervision to learn semantic alignments between images
and text, which enables robust generalization of CLIP even
in the absence of annotations. Jiang et al. [17] proposed a
recent variant, namely CLIP-Count, which employs a static
vision encoder to extract visual features from input images
and a textual encoder to capture the textual representation
of the object category intended for counting. Unlike existing
referenceless counting methods, it does not require any
additional samples for fine-tuning the model for the target
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Fig. 1. Schema of few-shot counting, reference-less counting, and
Vision-language Prior Guided (VLPG) zero-shot counting. In contrast to
conventional methods, the proposed VLPG model does not require specific
image patch labels or counting all salient objects in the image. Instead,
it counts objects of any category specified by text prompts. It is worth noting
that the numbers on the image represent the actual quantities of all categories
of objects, while the output numbers indicate the predicted quantity of a
specified category.

object, which makes domain-agnostic counting more feasible.
However, the direct application of CLIP encoders to the model
architecture, as demonstrated in CLIP-Count [17], has two
inherent limitations. (1) CLIP undergoes pre-training through
contrastive analysis of visual and language representations,
which facilitates object recognition within images while
lacking precise spatial localization. Consequently, utilizing
the vision encoder for feature extraction in counting tasks
is suboptimal, given that object counting primarily depends
on spatial distribution. (2) CLIP is pre-trained using
natural images characterized by sparse object occurrences.
Nevertheless, input images typically exhibit a denser
distribution of objects in object counting tasks, leading to a
shift in data distribution. Consequently, textual representations
may deviate from their corresponding visual representations.

This study aims to tackle the aforementioned limitations
by employing frozen CLIP for zero-shot object counting.
To focus on spatial information within image representations,
we propose the Vision-Language Prior Guidance (VLPG)
Network. It leverages textual information for guidance and
uses object bounding box annotations as prior information for
class-agnostic counting. The proposed schema is illustrated
in Fig. 1-(c). Specifically, we incorporate the Grounding
DINO [18] as a training-free module to equip the network
with extensive prior information concerning the spatial
positioning of specific objects. The spatial prior extractor is
frozen and does not introduce any further trainable parameters.
Secondly, we incorporated a Spatial Prior Calibration (SPC)
module to capture both long-range dependencies and local
regions associated with spatial positions. Besides, to address
the challenge of density shift encountered when employing
pre-trained CLIP encoders, we build the Object-Centric
Alignment (OCA) module. The OCA module serves as a
bridge between textual instructions and visual queries. It is
built to distill textual instructions into object queries, thereby
promoting interaction with visual information. Consequently,
this enhances the attentiveness of visual representations

towards specific objects. In a nutshell, the key contributions
of the paper are summarized as follows:

• A VLPG Network is proposed for zero-shot object count-
ing. It can extract distinctive representations aligned with
multi-modalities while incorporating positional informa-
tion to suppress background interference and enhance the
generalization capability of the network.

• An SPC module is built to enhance the visual repre-
sentation by correcting deviations in the visual feature
space. It can extract the long-range dependencies and
local regions within regions of spatial position.

• An OCA module is established to extract instructive
descriptors from the text and transform them into an
object query aligned with the vision representation. It can
tackle the misalignment between textual instructions and
visual representations.

II. RELATED WORK

A. Prompt-Based Foundation Model

The emergence of extended language models, such as
ChatGPT, has revolutionized the field of natural language pro-
cessing and extended its application to computer vision. These
models are referred to as “foundation models” and have shown
remarkable generalization capabilities in both zero-shot and
few-shot scenarios. In computer vision, Contrastive Language-
Image Pre-training (CLIP) [16] is a prominent foundational
model that employs contrast learning to train text and image
encoders. The CLIP model has emerged as a powerful tool
for bridging the gap between text and images. By training
on an extensive dataset of images and text, the CLIP model
has unlocked the potential for tasks like image-text matching.
It can understand images and their associated descriptions,
enabling it to perform tasks like finding matching images for
given textual queries.

In recent years, numerous object grounding models have
been proposed. Carion et al. [19] proposed the DEtection
TRansformer (DERT) model. It employed a Transformer
to predict the class and location of objects within images.
Zhang et al. [20] introduced the concept of dynamic anchor
boxes in DINO. In this approach, each position query is repre-
sented as a four-dimensional anchor box, which is dynamically
updated at every layer of the decoder. Liu et al. [21] utilized
dynamic anchor boxes for query formulation in DETR. The
box coordinates are directly used as queries for the Trans-
former decoder and are updated layer by layer. However,
previous research only performed well when dealing with
a limited label set, but their effectiveness diminished when
addressing a broader range of labels. Grounding DINO [18]
effectively addresses the challenges of complex label spaces
and significantly improves performance under diverse labelling
conditions. It effectively captures the precise spatial position-
ing of objects and can create bounding boxes for various
object categories. Moreover, the Grounding DINO fits into
current multimodal designs to provide meaningful guidance
information. The advent of foundation models has ushered in
a transformative era in computer vision. These models can
handle diverse data distributions without requiring explicit
training on those specific instances.
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B. Attention-Based Method

The attention mechanism enables the network to focus
on the discriminative features in the input data. The
attention mechanism has been widely applied in diverse
network architectures, which encompass Recurrent Neural
Networks (RNNs), Convolutional Neural Networks (CNNs),
and Transformer-based networks [22]. It has been employed
in diverse domains, such as semantic segmentation, object
detection, and crowd counting [23], [24], [25]. Predominant
attention mechanisms encompass spatial attention, channel
attention, and self-attention mechanisms. The spatial attention
prioritizes crucial regions within the input data and enhances
the spatial context information. The channel attention mech-
anism primarily focuses on the channel dimension of input
data, which augments the critical features within the channels.
Woo et al. [26] introduced the Convolutional Block Atten-
tion Module (CBAM), which integrates channel attention and
spatial attention. Fu et al. [27] presented the Dual Attention
Network (DANet) which integrates local features and global
dependencies to improve semantic segmentation performance.

The superiority of self-attention over traditional spatial and
channel attention methodologies lies in its minimal reliance
on external information and its enhanced ability to capture
non-local correlations [28], [29], [30]. This characteristic facil-
itates the extraction of global information representations in
Transformer networks without employing traditional RNNs or
CNNs. Both self-attention and cross-attention share a common
core mechanism, yet their applications and purposes are differ-
ent [31], [32]. Self-attention is specifically designed to handle
relationships within a single sequence, while cross-attention
addresses relationships between two distinct sequences. In this
paper, we build the spatial positional prior that encodes the
spatial position of the probe objects as hard-coded attention.
This guidance mechanism aims to enhance the model’s spatial
awareness of the query objects.

C. Class-Agnostic Object Counting

The class-agnostic object counting is broadly categorized
into three groups according to the method of identifica-
tion, e.g., few-shot counting methods, reference-less counting
methods, and zero-shot counting methods. Few-shot object
counting involves estimating the object quantity in an image
with a restricted number of training samples. This approach
enables rapid learning and adaptation to new object categories
in a short time, which provides flexibility and efficiency
across diverse practical applications. FamNet [33] utilized
ROI pooling to predict density maps and introduced a dataset
for class-agnostic counting, known as FSC-147 [33]. The
further advancement can be divided into two main aspects.
One approach involves the utilization of advanced visual
backbones, such as Vision Transformers (ViT), to enhance
the extracted feature representations [10], [13], [34]. The
second approach focuses on refining exemplar matching either
by explicitly modeling exemplar-image similarity [35], [36]
or by further incorporating exemplar guidance, as explored
in [37] and [11]. Despite the remarkable performance of these
methods, they are not suitable in scenarios where samples
are unattainable. Meanwhile, the method of reference-less
counting has gained attention as an effective approach for

class-agnostic counting that does not rely on human anno-
tations. RepRPN-Counter [15] introduced a region proposal
module tailored for extracting prominent objects, which elim-
inates the need for sampled inputs. RCC [14] used the
pre-trained Vision Transformer [38], [39] to extract salient
objects implicitly and directly regress a scalar for estimating
object counts. Various contemporary few-shot counting mod-
els [10], [11] can be adapted for reference-less counting.

Despite their independence from specific samples, these
approaches face a challenge in effectively specifying the object
of interest, particularly in the presence of multiple object
classes. Recently, zero-shot object counting methods have been
proposed to facilitate end-to-end training without the need
for patch-level supervision. Jiang et al. integrated Contrastive
Language-Image Pre-training (CLIP) [16] into the counting
network [17]. CLIP equips the model with the ability for
zero-shot image-text alignment. To transfer robust image-level
representations from CLIP to dense tasks such as density
estimation, a text-contrastive loss, and a hierarchical patch-text
interaction module are incorporated within the model. In this
paper, we focus on zero-shot object counting given its practical
application value.

III. METHODOLOGY

A. Framework Overview

The flowchart of the proposed Vision-Language Prior
Guidance (VLPG) Network is illustrated in Fig. 2. Initially,
the visual image Xi and the text instruction Xt are employed
as paired inputs. The VLPG utilizes two separate frozen
CLIP encoders to encode both the image and the text, which
facilitates interaction with cross-modal representations. First,
the Grounding DINO [18] module is utilized to incorporate
the spatial positional prior into the visual representations.
Afterwards, the Spatial Prior Calibration (SPC) module is
utilized to extract the long-range dependencies and local
regions of the spatial position. Furthermore, the Object-
Centric Alignment (OCA) module is introduced to translate
the text instruction into an object query, enabling effective
cross-modal interaction. Finally, the network produces
a density map, represented as M = Fθ (Xi, Xt), which
accurately identifies the spatial positions of the target objects
specified in the textual instructions.

B. Positional Prior Attentive Injection

The visual depiction obtained through the CLIP vision
encoder tends to emphasize the overall object categories in
the given images while showing limited regard for the spatial
position of objects. For counting the objects, it is essential
to model the fine-grained location of the object. Nevertheless,
the image encoder only focuses on image global information
and is insensitive to the spatial position information of the
objects. To improve the spatial perception ability of visual
features, we apply the spatial priors extracted from the large-
scale pre-trained Grounding DINO [18] model to focus on
relevant object regions. The illustration of the positional prior
extraction process is depicted in Fig. 3. It comprises five com-
ponents: an image encoder, a text encoder, a feature enhancer,
a text-guided selection querier, and a cross-modal decoder.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on March 08,2025 at 22:24:22 UTC from IEEE Xplore.  Restrictions apply. 



2490 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 35, NO. 3, MARCH 2025

Fig. 2. Framework of proposed VLPG network. It integrates pre-trained image and text encoders from the CLIP model to extract image and text representations,
respectively. To incorporate spatial context into the image representation, we utilize the multi-modal object detection model, i.e., Grounding DINO module,
to extract deep positional prior into the visual representation. Besides, a Spatial Prior Calibration (SPC) module is utilized to capture both long-range
dependencies and local regions within spatial positions. Furthermore, an Object-Centric Alignment (OCA) module is established to translate text representations
into visual features for cross-modality fusion. Finally, the density map is generated by the decoder.

Fig. 3. Illustration of the positional prior. It is taken from the frozen Grounding DINO module. The image and text extractors are first utilized to extract the
visual and textual features. Then, the similarity of visual and textual features is calculated by the language-guide query selection. Finally, the cross-modality
decoder generates the positional prior.

First, visual and textual features are extracted using the visual
encoder and text encoder, respectively. Subsequently, semantic
consistency constraints are performed by the feature enhancer
to align the visual and textual features. Then, the likelihood
of the textual and visual features is calculated using the
text-guided query selection to match the parts of the visual
information that are related to the textual prompt and guide
the model to focus on the object region. Lastly, the matched
features are fed into the cross-modal decoder to generate
the spatial positional prior Xmid. In particular, the positional
prior contains spatial location information of local objects
and global information of object distribution. By conducting
further text-guided selection on the visual features, it will be
transformed as query (Q), and the textual prompt information
is transformed to key (K ) and value (V ), which are fed into
the cross-modality decoder for positional prior fusion. It is
formulated as follows,

Xmid = S(
QK T
√

dk
)V . (1)

where S(·) represents the softmax function. dk represents the
dimension corresponding to each attention head.

C. Spatial Prior Calibration Module

The Spatial Prior Calibration (SPC) module is constructed
with two blocks, as shown in Fig. 4. First, the dimension of
the feature is reshaped to transport the Spatial Perception (SP)
block and Explicit Calibration (EC) block. In particular, an SP
block is utilized to capture global long-range dependencies and

a parallel EC block is employed to capture local key points
within regions of spatial position.

The SP block captures the long-range dependencies to
identify object location information, which employs the global
channel-based MLP operation with the full connection layer.
It comprises two residual units: a deep convolutional unit and
a channel-based MLP unit. Particularly, the input features are
inputted into the deep convolutional unit, which employs the
group-normalized depthwise convolution layer. The channel
scaling and drop path operations are applied to enhance
feature generalization and robustness. Subsequently, a residual
connection of Xmid is introduced. These procedures can be
formalized as follows,

X̃mid = DP(CS(DConv(GN(Xmid)))) + Xmid, (2)

where X̃mid represents the output of the depthwise
convolution-based unit. DP(·) employs the drop path operation
and CS(·) represents the channel scaling operation. GN(·)

represents group normalization, and DConv(·) denotes a depth-
wise convolution with a kernel size of 1 × 1. The middle
features X̃mid of the MLP-based unit is the output from the
deep convolutional unit. Then, the features are passed through
group normalization, followed by the channel MLP operation.
Subsequently, the operations of channel scaling, drop path, and
a residual connection for X̃mid are applied sequentially. It is
expressed as follows,

SP(Xmid) = DP(CS(CMLP(GN(X̃mid)))) + X̃mid, (3)

where CMLP(·) denotes the channel MLP.
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Fig. 4. Illustration of the SPC module. The SPC module consists of a Spatial Perception (SP) block and an Explicit Calibration (EC) block. The SP block
depends on the global channel MLP with the fully connected layer to capture the long-range dependencies. Besides, the EC block utilizes the different scaling
ratio convolution to extract the local feature.

The EC block is built to capture local features at multiple
scales, which utilizes the various scaling ratio convolution
layers. It consists of two components: 1) an inherent codespace
denoted as B = {b1, b2, . . . , bM }, where M = H × W
represents the total spatial number of the input features and
H, W denotes the feature map of height and width. 2) a
set of scaling ratios R = {r1, r2, . . . , rM } is employed to
capture multiscale features. Initially, the middle features from
Xmid are encoded through a series of convolution layers of
1 × 1, 3 × 3, and 1 × 1. The encoded features are then
processed by a 3 × 3 convolutional operation followed by a
Batch Normalization (BN) layer and a Rectified Linear Unit
(ReLU) activation function. Following the aforementioned
steps, the encoded features x̌n are mapped to the codespace.
It involves sequentially applying a set of scaling ratio r to
ensure the correspondence between each encoded feature xmid
and codespace entry bm . The information about the m-th
intermediate feature can be calculated as follows,

en =

N∑
i=1

e−rm∥x̌n−bm∥
2∑M

j=1 e−sm∥x̌n−bm∥2
(x̌n − bm), (4)

where rm represents the m-th scaling ratio, x̌n represents the
n-th pixel point, and bm denotes the m-th learnable visual
code-word. M denotes the total number of visual centers. (x̌n−

bm) indicates the relative position of each pixel with respect
to a code word.

Afterwards, the 8 is utilized to combine all en . It is
formalized as follows,

e = 8(en), (5)

where 8(·) comprises a BN layer with ReLU activation
function and mean layer.

The fusion feature e is further fed into a 1×1 convolutional
layer and a fully connected layer. Then, we employ channel-
wise multiplication between the input features Xmid and the
scaling ratio factor Sig(·). It is expressed as follows,

E = Xmid ⊗ (Sig(Conv1(e))), (6)

where Sig(·) represents the sigmoid function and Conv1 is
the 1 × 1 convolutional layer. ⊗ denotes channel-wise mul-
tiplication. Subsequently, we conduct channel-wise addition

between the features Xmid output from the middle feature and
the features E of the local region. It is calculated as follows,

EC(Xmid) = Xmid ⊕ E, (7)

where ⊕ denotes the channel-wise addition.
The positional prior P is generated by averaging the chan-

nels between the SP block and the EC block. It is formalized
as follows,

P(Xmid) = SP©EC, (8)

where P represents the positional prior information. © denotes
the element-wise concatenation. The P contains the spatial
distribution information and scale information of objects.

D. Visual Position Attention and Textual Context Attention

To accentuate the spatial position of a specific object, the
positional prior P is integrated into the image representation.
To this end, a multi-head cross-attention (MHCA) layer is used
as a visual position attention module. Especially, the image
representation Vi serves as the query (Q), while the spatial
prior P functions as both the key (K ) and the value (V ).
Following the MHCA, an MLP is utilized to fine-tune the
extracted representation. It is denoted as follows,

V′

i = MLP(S(
FCQ(Vi) ∗ FCK (P)

√
dk

) ∗ FCV (P)), (9)

where FCQ|K |V (·) represents the projection layers for the
three counterparts, MLP(·) denotes the function of the MLP
layer, and V′

i is indicative of the spatially enhanced visual
representation. Finally, the dimension is reshaped to the input
dimension size.

Similarly, a positional prior P is fed into textual context
attention, which integrates textual features into prior informa-
tion. It also leverages a multi-head cross-attention (MHCA)
layer. Here, the textual representation Vt acts as the query
(Q), while the prior context P serves as both the key (K )
and the value (V ). Following the MHCA, an MLP is applied
to refine the textual representation. This process is defined as
follows,

V′
t = MLP(S(

FCQ(Vt) ∗ FCK (P)
√

dk
) ∗ FCV (P)), (10)

where V′
t denotes the enhanced textual representation.
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Fig. 5. Illustration of the OCA module. The OCA module extracts prior
information on object representation from textual prompts, which enables
cross-modal interactions to assist visual features.

E. Object-Centric Alignment Module

Given the inherent contrast in object density between the
input image and the samples employed for CLIP encoder
training, a significant challenge arises due to the overall dis-
tribution shift, which impedes the alignment between text and
visual representations. Inspired by Q-former in BLIP-2 [40],
an Object-Centric Alignment (OCA) module is designed to
learn text queries that align the feature spaces of visual and
textual modalities, as illustrated in Fig. 5. The prior infor-
mation about object representations is extracted from textual
prompts across modal interactions to assist visual features.
Upon extracting the text representation V′

t, we proceed to
distill the query information of the object and inject it into the
initially randomized object query. The extraction and injection
processes are carried out through the fusion module, which
consists of the conventional multi-head attention module. The
randomly initialized query V0

t serves as Q, while the textual
context attention information V+

t functions as both V and K .
The object query can be constructed as follows,

V+
t = S(

QK T
√

dk
)V, (11)

where V+
t represents the augmented object query.

Finally, the Context Interact (CI) unit is employed to
encompass discriminative knowledge derived from the text
embedding V+

t . It is calculated as follows,

CI(V+
t ) =

V+
t +

1
N

∑N
i=1 V+

t

2
, (12)

where N stands for N -dimension along the channel direction.

F. Cross-Modal Fusion and Density Map Regression

Given visual representation V′

i and the textual query V′
t,

we construct a multi-head attention module for cross-modal
interaction and knowledge transfer between visual features
and text queries to obtain multi-modal features. Specifically,
the model incorporates a multi-head self-attention mechanism,
which takes V′

i as input. It further employs a multi-head
cross-attention layer that utilizes the output of the multi-head
self-attention layers as queries, and V′

t as keys and values
to facilitate knowledge transfer and interaction. Subsequently,
a two-layer feedforward network follows the multi-head cross-
attention to enhance the feature representation. Finally, the
CNN-based decoder is used to regress the density map, and the
predicted number of objects Fest is obtained by integration.

G. Loss Function

The Mean Squared Error (MSE) loss is utilized for model
optimization during the training stage. The representation of
this loss is as follows,

LMSE =
1
N

N∑
i=1

∥∥∥Fest
i − Fgt

i

∥∥∥2

2
, (13)

where N denotes the total headcount. Fest
i and Fgt

i represent
the estimated and the ground-truth count of the i-th image.
∥·∥

2
2 represents Euclidean norm squared.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Implementation Detail

All experiments were conducted using the PyTorch
deep learning framework [17], and with an NVIDIA
RTX3090 GPU. To optimize the learnable parameters model,
the Adam optimizer with a weight decay of 5 × 10−2 was
employed. The learning rate was set to 10−5. The batch size
was set to 32, and the model was trained for 200 epochs to
ensure the convergence.

B. Benchmarking Datasets

FSC-147 [33] serves as a meticulously annotated image col-
lection specifically crafted for class-agnostic object-counting
research. It encompasses a comprehensive assemblage of 7,135
images categorized into 147 distinct classes, and each cate-
gory features non-overlapping images predominantly depicting
items, e.g., kitchen utensils, office supplies, stationery, vehi-
cles, and animals. Each image in the dataset undergoes
thorough annotation, which establishes it as a foundational
source of ground truth data for the evaluation of counting mod-
els. The annotations provide detailed insights into the spatial
distribution of objects within the images. In the experiments,
we utilize the class names as textual input, without employing
annotations on image patches.

ShanghaiTech [41] presents a comprehensive
crowd-counting dataset with 1,198 annotated images.
It is segregated into two subsets, namely Part A and Part
B. Images in Part A are obtained from the internet and
depict densely populated targets. It includes 482 images, with
300 assigned for training and 182 for testing. In contrast, Part
B includes authentic captures of lively streets in Shanghai,
and displays relatively sparse target distributions. It includes
a total of 716 images, with 400 designated for training and
316 for testing. The distinct origins of these two segments
pose challenges for cross-scene evaluations.

CARPK [42] represents an image dataset specifically
crafted for the task of vehicle counting. It incorporates 1,148
bird’s-eye-view images of parking lots and captures vehicles
in varying time and weather conditions. The dataset embodies
a total of 89,777 cars and vividly illustrates variations in
density, occlusion, and scale. Each image within the dataset is
meticulously annotated, which offers comprehensive counting
data for both vehicles and pedestrians.
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TABLE I
OBJECTIVE COMPARISON RESULTS ON THE FSC-147 DATASET. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

C. Evaluation Metrics

Following prior researches [43], [44], [45], the Mean Abso-
lute Error (MAE) and Root Mean Square Error (RMSE) were
employed as metrics for evaluating. MAE was used to assess
the accuracy of the model. It is mathematically formulated as

MAE =
1
N

N∑
i=1

∣∣yi − ŷi
∣∣ , (14)

where N represents the total number of images in the test set,
yi denotes the ground truth of the actual number of objects in
the i−th image, and ŷi corresponds to the total predicted count
from the density map for the same image. The advantage of
MAE lies in its insensitivity to outliers, as it solely considers
absolute differences.

However, due to the nature of absolute values, MAE cannot
provide deeper insights into the analysis of squared errors.
Conversely, RMSE was utilized to evaluate the robustness of
the model, with the mathematical expression as

RMSE =

√√√√ 1
N

N∑
i=1

|yi − ŷi |2. (15)

In comparison to MAE, the primary advantage of RMSE is
its sensitivity to large errors, thereby revealing inadequacies
in the performance of the model on certain samples.

D. Experiments on FSC-147 Dataset

Table I presents the objective comparison results of the
proposed method VLPG against State-Of-The-Art (SOTA)
methods on the FSC-147 [33] dataset. In comparison to
the CLIP-Count [17], which achieves zero-shot object count-
ing by correcting the visual feature space through textual
prompts, both MAE and RMSE have shown an improvement
of 14.58% and 12.57% on the validation set, which indicates
superior counting performance over advanced zero-shot count-
ing methods. To comprehensively assess the performance of
the counting model, we included comparisons with several
few-shot methods and reference-less counting methods in

Fig. 6. Visualization of the input image and generated density maps for the
samples from the FSC-147 dataset.

Table I. It is observed that the proposed method VLPG
achieved a reduction of 24.26% and 11.27% in MAE and
RMSE on the validation set, and 20.36% in MAE on the test
set, compared to the SOTA few-shot method CFOCNet [46],
which leverages the similarity between query images and
reference images to achieve few-shot object counting. The
proposed method reduces the reliance on manually annotated
samples during the training and testing phases by utilizing
textual descriptions. Importantly, it demonstrates its unique
strengths when dealing with a wide range of categories and
large-scale sample sets. When compared to the reference-less
counting method LOCA [10], which achieves zero-shot count-
ing by iteratively blending shape and appearance information
with image features, the proposed method VLPG achieves
reductions of 7.92% and 25.54% in MAE and RMSE on
the validation set, and 6.06% in RMSE on the test set. This
further validates the exceptional performance of the proposed
method VLPG not only in zero-shot scenarios with high
accuracy and robustness but also in handling few-shot and
reference-less scenarios.

The visualization results for the FSC-147 dataset are
depicted in Fig. 6. The second and fourth rows display the
application of predicted density maps overlaying the original
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TABLE II
CROSS-DATASET EVALUATION ON SHANGHAITECH CROWD COUNTING DATASET

Fig. 7. Visualization of the input image and generated density maps for the
samples from the ShanghaiTech dataset.

images. It is evident that the proposed VLPG model optimally
exploits both spatial and textual prior information, which
enables accurate counting of various object types guided
by textual prompts. Furthermore, the predicted density maps
exhibit spatial consistency with the ground truth density dis-
tributions.

E. Experiments on ShanghaiTech Dataset

Table II presents the objective comparison results of the
proposed method VLPG against SOTA methods on the
ShanghaiTech dataset [41] dataset. We assessed the model’s
cross-domain generalization capability by conducting tests on
the ShanghaiTech dataset using the model trained directly on
the FSC-147 dataset. Throughout this process, we only needed
to update the input textual prior information to “person” to
specify the target population for counting. It can be observed
that, even in this scenario, the proposed method outperforms
other counting methods listed in Table II. Specifically, MAE
and RMSE were reduced by 7.11% and 7.72% in the Part A
dataset and 7.22% and 7.49% in the Part B dataset compared
to CLIP-Count [17]. The experimental results demonstrate
that the proposed method reduces interference among objects,
which enhances long-distance dependencies to improve count-
ing accuracy. Qualitative results in Fig. 7 provide additional
confirmation of the effectiveness of our method on Shang-
haiTech, particularly in cross-dataset scenarios. Visualizations
further indicate that the VLPG can extract the long-range
dependencies to suppress the background and capture the local
region to address the scale variation. The proposed method can
enhance counting precision in regions with high density.

TABLE III
CROSS-DATASET EVALUATION ON CARPK DATASET

F. Experiments on CARPK Dataset

We also tested the cross-domain generalizability of VLPG
model on the CARPK [42] dataset. Similar to the Shang-
haiTech [41] dataset, the model was trained on FSC-147
without fine-tuning and directly tested on the CARPK dataset.
The input textual prior information was set to “car” to specify
the target object to be counted. The objective comparison
results are shown in Table III. Compared with the Shi et
al. [49], which incorporates the Segment Anything Model into
the counting network to achieve zero-shot object counting,
the proposed method VLPG achieved reductions of 7.57%
and 3.16% in MAE and RMSE, respectively. The objec-
tive results indicate that the introduction of spatial location
priors can effectively enhance the precision of object iden-
tification within images, thereby improving the accuracy of
object counting. When compared with the few-shot counting
method BMNet [35], which jointly learns representation and
similarity measurement to achieve zero-shot counting, the
proposed method VLPG demonstrated decreases of 29.63%
and 43.94% in MAE and RMSE, respectively. These consistent
improvements further validate the superiority of the proposed
method VLPG in counting tasks. Visualization results on
the CARPK dataset are illustrated in Fig. 8. Qualitative
observations reveal that the integration of spatial information
substantially aids in distinguishing between targets and back-
grounds, which highlights the distinct advantage of combining
textual descriptions with spatial priors.

G. Efficiency Comparison

To assess the efficiency of the proposed method, we con-
ducted a series of comparative experiments on the CAPRK
dataset using two different GPUs (i.e., RTX 3090 and RTX
3060). The input size was set to 384 × 384. Four evalua-
tion metrics, namely parameters, FLOPs, inference time, and
Frames Per Second (FPS), were utilized to assess the efficiency
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TABLE IV
COMPARISON RESULTS OF THE MODEL COMPLEXITY ON CARPK DATASET, THE INPUT IMAGE SIZE IS 384 × 384

TABLE V
COMPONENTS ANALYSIS. THE PROPOSED COMPONENTS WERE PROGRESSIVELY INCORPORATED INTO THE BASELINE

TO STUDY THE INDIVIDUAL CONTRIBUTION

Fig. 8. Visualization of the input image and generated density maps for the
samples from the CARPK dataset.

of different methods. The comparative results are illustrated
in Table IV. On the CAPRK dataset, the proposed VLPG
scores 10.14 and 13.79 in MAE and RMSE, which outperform
other methods in terms of counting accuracy. Nevertheless,
in terms of parameters and processing time, the VLPG is
slightly less efficient than other methods. Specifically, the
proposed method has 90.11M parameters, which is higher
than DSPI (68.67M). The VLPG has 127.37G FLOPs, which
is comparable to other methods. Regarding processing time
and frame rate, the proposed method takes 14.40ms and
24.00ms for each image on RTX 3090 and RTX 3060 GPUs,
namely achieving FPS of 69.47 and 41.66. It indicates that the
VLPG can process in real-time (30FPS) in video surveillance
and security scenarios. In the future, we will explore more
efficient model architectures, which aim to reduce parameter
count and computational complexity while maintaining or even
improving the accuracy of the model.

H. Ablation Studies

1) Component Analysis: To investigate the individual con-
tributions of different components in the VLPG model and
assess its effectiveness, ablation experiments were extensively
conducted on the FSC-147 dataset, with the objective com-

parison results shown in Table V. Additionally, we performed
intermediate feature visualizations for various combinations,
as shown in Fig. 9.

1) Scheme-a represents the baseline model without the
Grounding DINO (Prior), SPC, and OCA modules.

2) Scheme-b indicates the addition of the OCA module
to the baseline model. The results show that MAE
and RMSE decreased by 5.43 and 1.89, respectively.
Additionally, one can see from Fig. 9 that the model with
the OCA module pays more attention to the foreground
object areas compared with the baseline model. This
indicates that the optimized textual features can provide
a stronger alignment capability.

3) Scheme-c incorporates the Prior module on the baseline
to offer spatial prior positional information for target
objects. As depicted in Table V, compared with the
baseline model, it reduces the MAE and RMSE by
9.84% and 10.27% on the validation set. This verifies the
effectiveness of the deep spatial prior. Besides, the visual
representation of the positional prior reduces attention to
irrelevant background information, as shown in Fig. 9.

4) Scheme-d introduces the SPC module on the baseline
for capturing both global long-range dependence and
local key points within spatial regions. As shown in
Table V, compared to adding only the Prior module,
MAE and RMSE decreased by 0.71% and 4.23% on the
test set, respectively. Fig. 9 indicates that the SPC mod-
ule assists the model in obtaining a more comprehensive
context at both global and local levels, which enhances
its understanding and representation of the input.

5) Scheme-e simultaneously incorporates Prior, SPC, and
OCA modules into the baseline. Compared to the model
that only included Prior and SPC modules, the MAE and
RMSE on the validation set decreased by 7.44% and
3.31%, respectively. This shows that the OCA module
improves counting accuracy and robustness by match-
ing text and image information on top of the existing
foundation. Although the MAE on the test set is not
the best, with only a 0.39 difference from the optimal
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Fig. 9. Visualization of the baseline with different components.

Fig. 10. Quantitative comparisons of different SPC module variations.

result, Fig. 9 shows that the scheme is more focused on
the object area. Additionally, its FLOPs do not differ
significantly compared with other schemes, as shown in
Table V. Therefore, we select this formula as our final
scheme, termed VLPG.

2) Ablation Analysis on the SPC Module: To validate the
impact of different combinations of the global block SP
and the local block EC in the SPC module on counting
performance, we conducted an ablation study on the FSC-147
dataset, as shown in Fig. 10 and Fig. 11.

1) SP. When only the SP block is adopted, the MAE on
the test set is 19.11, and the RMSE is 104.90. The
intermediate feature visualizations are shown in Fig. 11.
Particularly, as shown in the third column of the third
row, the model utilizes the SP block to suppress the
background area in the lower right corner of the image.
Furthermore, due to the scale variation in objects, the
SP block can extract position information from the
target (apple) across different distances from near to far.
It indicates that the SP block can capture long-range
dependencies between different locations in the image
and it enables the model to perceive the connections and

information between distant locations of various targets
within the image.

2) EC. When only the EC block is used, the MAE on
the test set is 19.66, and the RMSE is 107.55. This
result is slightly worse than the performance of the
SP block. This is due to the fact that the EC block
focuses on extracting local features and lacks global
information processing, which leads to poorer counting
performance compared to the SP block. As shown in the
fourth column of the first row of Fig. 11, the EC block
effectively extracts the features of individual objects.

3) EC+SP. When the EC block is equipped before the SP
block, the scores of MAE and RMSE on the test dataset
are 18.38 and 103.84, respectively. This combination
performs better than using the SP or EC block alone.
The reason is that the extraction of global features is
enhanced by incorporating local features, which com-
bines local details with global information to improve
counting accuracy.

4) SP+EC. When the SP block is placed before the EC
block, the MAE and RMSE score 18.03 and 104.79 on
the test set, respectively. This configuration performs
better than the “EC+SP” combination on the validation
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Fig. 11. Qualitative visualization of feature maps obtained from different
SPC module variations.

set, because “SP+EC” allows the model to better capture
both overall information and details.

5) SP∥EC. When the SP and EC blocks are combined
in parallel, they achieve the best performance, with an
MAE of 17.60 and an RMSE of 99.50 on the test set.
Additionally, it can be observed that these intermediate
features focus more on the object area compared to other
combinations in Fig. 11. This indicates that the parallel
combination can effectively utilize both global and local
features, thus providing a more comprehensive feature
representation.

V. CONCLUSION

In this paper, we recognize limitations within the existing
class-agnostic counting model, specifically its insensitivity to
position information and potential misalignment within the
hypothesis space. To tackle these limitations, we proposed
the Vision-Language Prior Guidance (VLPG) Network. The
VLPG consists of three critical modules, i.e., Grounding
DINO, Spatial Prior Calibration (SPC), and Object-Centric
Alignment (OCA) module. The VLPG employs a pre-trained
object grounding model integrated to obtain spatial location
as an additional prior for a given query class, which
facilitates more precise localization of the object. Meanwhile,
the SPC module is built for the extraction of long-range
dependencies and local regions within spatial position
regions. Moreover, the OCA module is designed to harmonize
feature spaces across multiple modalities. Through extensive
experimentation on various benchmarks, the proposed model
showcased superior performance over the SOTA competitors.
It contributes to the advancement of class-agnostic counting
in a multi-modal context.
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