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Abstract—With the rapid development of electronic payment
technologies, facial recognition-based payment systems have
become increasingly popular and indispensable. However, the
majority of facial recognition payment systems are vulnerable
to being manipulated by facial deepfake technology, and it
would be a serious threat to personal property and privacy.
In order to effectively defend deepfake models on the premise
of minimizing alterations to the original image, we propose a
union-saliency attack model which is a well-trained deepfake
model while maintaining plausible detail of the original face
images. To this aim, we derive a union mask mechanism to
accurately determine facial region as a prior in guiding the
subsequent perturbations, with the objective of minimizing the
information loss on input images. Additionally, we propose a
novel structural similarity loss and a noise generator to minimize
detail degradation. Experiments prove that the proposed method
can interfere with deepfake models effectively and minimize the
distortion of the original image simultaneously.

Index Terms—Deepfake, generative adversarial network, facial
recognition payment, model attack.

I. INTRODUCTION

FACIAL recognition system is a critical component of
digital payment. Although this technology brings a lot

of conveniences, it can be maliciously abused with the deep-
fake model, which is capable of generating real-time fake
face images to fool face payment systems with unauthorized
transactions [1]. To solve this issue, various countermeasures
have been developed to combat deepfakes. These methods can
be categorized into two modes, namely deepfake detection
and deepfake disruption. Deepfake detection is to detect
whether the image is real or fake. In contrast, deepfake
disruption aims to prevent the creation of convincing synthetic
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images. The schematic diagrams of the two modes are shown
in Fig. 1.

Some attempts were made to explore deepfake detection
methods [2], [3], [4]. Hsu et al. [2] proposed a two-streamed
network that facilitates the extraction of discriminative
synthetic features at intermediate and advanced levels by
consolidating cross-layer representations. Zhao et al. [3]
designed a pair-wise self-consistency learning to detect fake
images based on source feature inconsistency. Yang et al. [4]
proposed a Masked Relation Learning model, which decreases
the redundancy to learn informative relational features.
Specifically, a spatio-temporal attention module is exploited
to learn the attention features of multiple facial regions.
Li et al. [5] introduced an Artifacts-Disentangled Adversarial
Learning framework, which aims to achieve accurate deep-
fake detection through the disentanglement of artifacts from
irrelevant information. To address an issue of discrepancies in
quality between test faces and training faces, Wang et al. [6]
employed an innovative technique termed the Localization
Invariance Siamese Network (LiSiam) for the purpose of
deepfake detection. The primary focus of LiSiam is to ensure
localization invariance and enhance the ability of the model
to cope with diverse image degradation. These deepfake
detection methods have made significant progress in detecting
fake images. However, these methods work as an ex-post
approach [7] and cannot prevent the generation of fake images
ahead of time. More critically, a common issue with current
deepfake detection algorithms is their insufficient generaliza-
tion capacity [8], [9], [10].

In contrast, deepfake disruption, aimed at preventing the
generation of fake images proactively. The process of dis-
rupting deepfakes typically involves the introduction of
imperceptible noise into the images [11], [12], [13]. Although
it can disrupt the deepfake models, it unavoidably results in
the loss of image details. Besides, existing methods often
introduce noise across the entire image without considering
whether those regions correspond to facial areas. Although
there exist some methods [14] that perturb only the face region,
they are mostly driven by a pre-trained facial region detector,
which is prone to be inaccurate caused by the variations
between the training and testing distribution.

In this work, we propose a union-saliency attack model,
which provides an effective and practical solution to counter
deepfake models while keeping image modifications to a
minimum. It effectively addresses the issue of fraudulent
utilization of face images generated by deepfake technology
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Fig. 1. Diagrams of deepfake detection and deepfake disruption. (a) Deepfake detection. Using a detector determines whether an image was synthesized
by a deepfake model. (b) Deepfake disruption. Adding perturbations to input images disrupts deepfake models from producing realistic images. The images
generated by deepfake models have obvious artifacts and can be easily distinguished visually.

in the context of electronic payments. Specifically, given a
face image, we first generate a preliminary salient mask to
distinguish and extract the face region. As a complemen-
tary, a manipulation mask is introduced to guide addition
perturbation. It provides details of the facial area where
the deepfake model modifies. Therefore, a union mask is
capable of inducing the noise to be added to the facial region.
Furthermore, we introduce a noise generator with a structural
similarity loss function to further minimize detail degradation.
In sum, the contributions of the work are three-fold:

• We propose a union-saliency attack framework to focus
on the face region. The proposed framework can min-
imize the distortion of perturbed images and disrupt
deepfake systems.

• We employ a union mask, which consists of a salient
mask and a manipulation mask, to provide a more
precious face region. Furthermore, we adopt a noise
generator to optimize a small initial perturbation, and
to reduce the loss of details of the original image with
disturbing the deepfake model.

• We introduce a structural similarity loss to focus on the
difference between the original image and the disrupted
image. This is beneficial to reduce the detail loss of the
disrupted image.

The rest paper is structured as follows: Section II presents
the related work. Section III illustrates the proposed method
in detail. Section IV analyses the experimental results. The
paper is concluded in Section V.

II. RELATED WORK

A. Generative Adversarial Network

The original GAN model was put forward by
Goodfellow et al. [15]. It has excited a sensation in the
domain of deep learning and expanded the application areas
of deep learning. There has been a significant increase in the
development and proposal of efficient GAN architectures that
are capable of learning the various variations of individual
faces, including differences in hair color, age, expression, and
gender. Zhu et al. [16] proposed an image-to-image translation
model named CycleGAN. Compared to traditional paired
image-to-image translation methods, the CycleGAN model
does not require training on paired images. However, for
training across multiple domains and datasets, CycleGAN has
shown unsatisfactory results. Choi et al. [17] further addressed
this problem by introducing the StarGAN model in 2018.

Fig. 2. Generated fake faces with different facial attributes.

Pumarola et al. [18] employed GANimation for continuous
domain facial expression synthesis. The GANimation employs
attention mechanisms to enhance the robustness of the network
in background and lighting variations. Another representative
work termed StyleGAN3 was proposed by Karras et al. [19].
In comparison with StyleGAN [20] and StyleGAN2 [21],
StyleGAN3 enhances the capture of perceptual information
utilizing reversible multi-layer perceptron and microstructure
discriminator.

In this work, we utilize a StarGAN model that has been
trained to create face images with alterations to diverse
attributes. Furthermore, to seek a kind of adversarial pertur-
bation that could disrupt the fully trained StarGAN model,
we propose an anti-forgery approach termed union-saliency
attacker.

B. Deepfake Creation

Although GAN offers numerous benefits, they have also
been used to create inappropriate adult content and spread
misinformation, which pose a threat to personal privacy and
have negative impacts on politics. Deepfake creation is to
utilize deep learning models to synthesize facial images. It
is employed to replace one individual facial features with
another individual facial features or change face attributes.
Some generated fake faces with different facial attributes, e.g.,
changing hair, color changing gender, age, are depicted in
Fig. 2.

Recently, with the development of GAN, numerous GAN-
based deepfake models [22], [23], [24], [25] have been
designed to generate forgery facial images, that are difficult to
be distinguished visually. He et al. [26] implemented AttGAN
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Fig. 3. Illustration of the union-saliency attack for defending deepfake. By perturbing the input images in the salient area, particularly the face region, the
deepfake system is effectively disrupted. As a result, the generated images become less realistic and display noticeable artifacts that can be easily detected
visually.

with an attribute classification constraint. The attribute classifi-
cation constraint is utilized to edit the generated images while
preserving the qualities of the original image. Liu et al. [27]
proposed STGAN to highlight specific facial features while
maintaining the other areas intact. Gao et al. [28] reported a
high-fidelity arbitrary face editing (HifaFace) that can make
accurate face editing while keeping rich details of undesired
attribute areas.

C. Deepfake Disruption

The objective of deepfake disruption is to prevent the
creation of deepfakes proactively. In recent years, some
studies [29], [30], [31] have illustrated that adding impercep-
tible noise to the original sample can deceive Deep Neural
Networks (DNNs). Goodfellow et al. [32] proposed a Fast
Gradient Sign Method (FGSM) to generate adversarial sam-
ples by computing the gradient of the loss function with
respect to the input data. The follow-up work I-FGSM [33]
performs multiple gradient updates to generate stronger per-
turbations. These studies proved that the existence of such
adversarial examples causes the vulnerability of the DNN.
Hence, researchers attempted to determine the potential vul-
nerability of deepfakes by interrupting them with adversarial
examples. Athalye et al. [34] proposed the expectation-
over-transformation (EoT) method to generate adversarial
examples that can withstand preprocessing transformations.
Yang et al. [35] designed a defense technology to protect
users from GAN-based deepfake attacks. Ruiz et al. [12]
reported spread-spectrum adversarial attacks, that can bypass
blurring defense mechanisms in a gray-box scenario. The
spread-spectrum adversarial attack method exhibits high trans-
ferability across different types and magnitudes of blur.
Huang et al. [13] introduced an initiative defense model to
safeguard facial data against manipulation. The presence of
the embedded poison perturbations substantially impairs the
performance of face forgery models at the inference and
training stages.

In this work, we design a union-saliency attack framework
to generate adversarial examples. Unlike the aforementioned
methods that manipulate the entire image, the proposed model

can minimize adding disturbance to the background and
preserve more facial details.

D. Saliency Detection

The task of saliency detection involves the identifica-
tion and localization of the most visually conspicuous area,
termed as “salient region”. In order to enhance the accu-
racy of salient object detection, numerous works [36], [37],
[38], [39], [40], [41] have improved the saliency detection
module. Wu et al. [42] introduced a Sample Adaptive View
Transformer module which includes three different transfor-
mation branches. This configuration facilitates the acquisition
of diverse features corresponding to distinct perspectives.
Cong et al. [43] designed a weakly-supervised model by
employing hybrid labels. These models enable the network to
focus on the foreground region and disregard the background,
improving its ability to perform the task of salient object
detection.

In this work, we adopt a pre-trained TRACER [44] model
to generate a salient mask. This model can produce a weak
annotation for the facial region of interest and highlight
the most important and relevant main portrait area. As a
complementary to the saliency map, an assistive manipulation
mask is simultaneously introduced to guide the perturbation.
The manipulation mask is regarded as a region that the
deepfake model altered to the original image. In this paper,
the coupling of the salient mask and the manipulation mask
is termed a union mask.

III. METHOD

A. Overview

The primary aim of the union-saliency attack proposed in
this work is to efficiently impair deepfake systems by subtly
perturbing the facial region in the original image. The overall
framework is shown in Fig. 3. The attack aims to minimize
the image information loss while achieving maximum effec-
tiveness. This framework is designed in a four-step process:

(1) Creating union masks (Section III-B).
(2) Perturbing the facial image in a union-saliency method

while ensuring imperceptibility (Section III-C).
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Fig. 4. The architecture of TRACER.

(3) Adding the structural similarity loss function to the
original loss function so as to reduce the distortion of the input
image caused by the perturbation (Section III-D).

(4) The face images were fed forward into the deepfake
model (Section III-E), with the expectation that it would be
readily distinguishable visually.

B. Union Mask

Deepfake models typically manipulate the face through
techniques such as face swapping or attribute manipulation.
In order to effectively thwart deepfake systems and minimize
image distortion resulting from the introduction of perturba-
tions, we adopt a pre-trained model to accurately isolate the
facial area from the background elements that are not relevant
to the face. However, due to the inability to accurately identify
portrait areas with only model-generated saliency masks, a
manipulation mask is introduced to guide addition perturbation
with a saliency mask. The union mask is created through the
combination of the saliency mask and the manipulation mask.

The saliency mask is generated by the well-trained
TRACER [44] model. The architecture of TRACER is shown
in Fig. 4. Specifically, the TRACER model consists of an
efficient backbone encoder and attention-guided salient object-
tracking modules. The TRACER model employs EfficientNet
as the backbone encoder to extract multi-scale features
and uses the masked edge attention module to improve
memory efficiency. The union and object attention modules
are integrated within the decoder to effectively combine multi-
level features. The outputs of encoders are incorporated into
these modules. The Union Attention Module (UAM) effec-
tively combines multi-level features and captures significant
contextual information from both channel and spatial repre-
sentations. The UAM can enhance the detection performance.
Furthermore, the object attention module enhances object
detection and edge extraction by leveraging refined channels
and spatial representations. Therefore, it exhibits an increased
level of precision in generating saliency masks.

Denoting an original image as Iin, and a pre-trained
TRACER model is defined as fsd(·), the generated saliency
mask is defined as,

Msm = fsd(n(Iin, μ, σ ), θs), (1)

where n(·) refers to the process of normalization. μ and σ are
the mean and variance of the raw input image, respectively. θs

in the TRACER model is a fixed value that remains unchanged
during the inference process of the model.

Fig. 5. Results of the intermediate process. The images from left to
right are original images, saliency masks, foreground face region of images,
manipulation masks, deepfake-generated images from the original images and
final disrupted images by the proposed model.

The manipulation mask provides a precise facial region
to guide perturbation introduction. The manipulation mask is
formulated as,

Mma =
{

0, if ‖G(Iin) − Iin‖ < 0.5,

‖G(Iin) − Iin‖, otherwise,
(2)

where G(Iin) represents the image generated by the GAN
model from the original input image Iin. The G(·) represents
the GAN model. In contrast to utilizing post-processing
techniques for the conversion into a binary map, regions with
minimal changes in the image are assigned a value of zero,
and the regions are determined by ‖G(Iin) − Iin‖.

The union mask is a linear combination of the manipulation
mask and the saliency mask. It is defined as,

Mun = α · Msm + β · Mma, (3)

where α and β are the weights of the saliency mask and
manipulation mask, respectively. The saliency mask Msm and
the manipulation mask Mma are shown in Fig. 5. Compared
with the saliency mask, the union mask can better highlight
the foreground of the image. With the union mask Mun, the
foreground face region is obtained as,

Ifface = Iin(x, y) × Mun(x, y), (4)

The incorporation of the manipulation mask Mma with the
saliency mask Msm enables the preservation of fine facial
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details. Applying the union mask to the foreground region
ensures that subsequent perturbations have no effect on the
background. Therefore, this model can reduce the loss of
image details.

C. Union-Saliency Image Perturbation

While contemporary deepfake models exhibit enhanced
performance relative to conventional methods, they remain
susceptible to adversarial attacks. To disrupt a pre-trained
deepfake model, a simple yet efficient solution is to adopt
Section II-C assumption by disrupting the original image. The
perturbed images can be generated as,

Iptb = Iin + τ, (5)

where Iptb is the perturbed image. τ is an imperceptible
perturbation that can be uniform noise, Gaussian noises, or
salt-and-pepper noises. However, the imperceptible disruption
is randomly generated and may not be the smallest perturba-
tion that obstructs a deepfake model. To solve this issue, a
noise generator is employed to iterate the random perturbation.
The objective function can be formulated as,

minL(G(Iin + τi, c)), (6)

where i represents the number of iterations for the perturba-
tion, and c is the facial attribute label. The τi is obtained as,

τi = τi-1 − η · ∇τi-1L(G(Iin + τi-1, c)), (7)

where η is the learning rate, and it is set to 1e-4. The final
disturbance generated by the noise generator is defined as
τ̃ . For a deepfake system, when the perturbed image Iptb is
input, it has the capability to output a generated image Optb
which will have noticeable artifacts. This proves that adding
perturbations can disturb the deepfake system.

The balance between disrupting the deepfake system and
preserving image details is crucial. To mitigate the loss of
original face image details and disturb the deepfake system, we
present a novel union-saliency approach. Given the union mask
Mun generated by Eq. (4), the perturbation is accomplished by
redefining Eq. (7) as,

τ̃ptb = Mun × τ̃ , Iadv = Iin + τ̃ptb, (8)

where the parameter Iadv represents the perturbation factor,
which is added to the original image to achieve the desired
level of disruption. Iadv is the perturbed image with a union
mask.

D. Loss Function

Given a deepfake system G(·), the attack has two objectives,
each on a separate manifold.

• The disrupted image Iadv is envisioned to have mini-
mal distortion while effectively disrupting the deepfake
system, i.e., the introduced perturbation is supposed to be
invisible, which is expressed as,

min
τptb

L(
Iin + τptb

)
, s.t.‖τptb‖∞ ≤ ε. (9)

• The deepfake-generated images G(Iin) from the origi-
nal images and the deepfake-generated disrupted image

G(Iadv) is projected to be highly unnatural contrasting
with G(Iin), i.e., the introduced perturbation effectively
induces degradation in the generated image, which is
expressed as,

max
τptb

L(
G(Iin), G(Iin + εptb)

)
, s.t.‖τptb)‖∞ ≤ ε. (10)

To mitigate distortions arising from the introduction of
perturbations to images, we introduce a structural similarity
(SSIM) loss [45] based on the original loss function. The
original loss is formulated as,

L1(G(Iadv), G(Iin)) =
∑n

i=1(G(Iadv − G(Iin))
2

n
. (11)

The structural similarity loss is frequently utilized as an
image quality metric to calculate the likeness between two
images. It is commonly employed as a loss function for image
processing. The SSIM loss is formulated as

SSIM(Iin, Iadv) =
(
2μIinμIadv + λ1

)(
2σIinIadv + λ2

)
(
μ2

Iin
+ μ2

Iadv
+ λ1

)(
σ 2

Iin
+ σ 2

Iadv
+ λ2

) ,

Lssim(Iadv, Iin) = 1 − SSIM(Iin, Iadv), (12)

where μ and σ denote the mean and variance. The values
of λ1 and λ2 are set as 1e-4 and 9e-4, respectively. Unlike
the original loss, the SSIM loss focuses on the relationship
between Iin and Iadv in luminance, contrast, and structure. The
overall loss function is formulated as,

L = L1(G(Iadv), G(Iin)) + γ ∗ Lssim(Iadv, Iin), (13)

where the parameter γ is a weight of the SSIM loss.

E. Deepfake Attack Model

The aim of a deepfake attack model is to trick a deepfake
system G(·) that has been trained with parameters θg to
generate a visually authentic facial image g(Iin) using the
original image Iin. To this aim, the model should be fooled
by a disrupted image Iadv, which is known as an adversarial
attack. The Fast Gradient Signed Method (FGSM) [32] is a
well-established technique to attack neural networks. It can
modify the input through the addition of a small noise in the
direction of the loss gradient with respect to the input data. It
is formulated as,

Iadv = Iin + m sign
(∇xL(θg, x, Iin)

)
, (14)

where ∇xL is the loss function and m denotes the size
of the FGSM step. The I-FGSM [33] further improves the
FGSM algorithm by iteratively applying small perturbations
to the input in the direction of the gradient of the loss. It is
mathematically denoted as,

I0
adv = Iin,

It
adv = It−1

adv + a sign
(
∇xL(θg, It−1

adv , y)
)
, (15)

where a is the step size of the I-FGSM.
The perturbed image is inevitably distorted after adding

perturbations to the original image. To address this issue,
we propose a union-saliency attack. The core idea of this
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TABLE I
COMPARATIVE RESULTS IN L1 ERROR AND L2 ERROR. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Algorithm 1 Pseudocode of the Union-Saliency Adversarial
Attack Model
Input: Deepfake generator G(·), Pre-trained saliency detection model
fsd(·), Input face image Iin, Disruption magnitude a.
Output: Disrupted face image Iadv, generated image from the
disrupted counterpart g(Iadv).

Using saliency detection to generate saliency mask Msm as Eq. (1).
Generating the union mask Mun as Eq. (3).
Using noise generator and the union mask Mun to generate

perturbation τ̃ptb as Eq. (8).
Applying perturbation τ̃ptb on the face region to get the residual

component by I-FGSM algorithm by Eq. (16).
Feeding the union-saliency perturbed face image Iadv into the

deepfake generator to get the translated image g(Iadv).

method is to constrain the disturbance in the salient face area
through the union mask. Meanwhile, the SSIM loss function
is employed to constrain the differences between the original
image and its counterpart with added noise. This process is
formulated as,

I0
adv = Iin + τ̃ptb,

It+1
adv = It

adv + a sign
(∇xL(θg, It

adv, y)
) × Mun, (16)

where the L(·) is formulated as Eq. (13), and “×” denotes the
matrix multiplication operation.

Following the recent work [12], a Gaussian smoothing filter
is employed to blur the input image at each iteration so as
to bootstrap the attacker. The pseudocode of the proposed
union-saliency adversarial attack model is summarized in
Algorithm 1.

IV. EXPERIMENTS AND ANALYSIS

A. Implementation Details

In the union-saliency attack framework, the TRACER [44]
is employed to generate the saliency mask. The kernel size is
set to 11 and σ is set to 1. A Gaussian blur filter is employed
as a pre-processing step for the image. The magnitude of
perturbation in Eq. (5) is set to 0.05. The step size a in Eq. (16)
is set to 0.01 [12], and the loss function for the union-saliency
framework in Eq. (13) is a combination of MSE loss and
SSIM loss. We empirically set the parameter α to 1.0, β to 0.1
and γ to 1.0. The framework is implemented in PyTorch [46]
framework with an NVIDIA GeForce GTX 3090Ti GPU.

B. Datasets

The experiments are performed on the CelebFaces
Attributes (CelebA) dataset [47]. It is an openly available

dataset consisting of 202,599 face images provided by 10,177
celebrities. We conduct a comprehensive evaluation of the
proposed methods by sampling images at various scales,
including a small scale (500 images), a medium scale (1,000
images), an intermediate scale (2,000 images), and a large
scale (4,000 images).

C. Evaluation Metrics

To validate the effectiveness of the proposed union-saliency
attack framework, we conduct an evaluation objectively and
subjectively. For objective evaluation, four evaluation metrics,
i.e., L1 error, L2 error, peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM), are adopted to
measure the difference between the original face images and
the disrupted image. For subjective evaluation, we visually
depicted the generated images produced by the deepfake
system using both Iin and Iadv as inputs and visualize the
generated image by the deepfake framework from the pair of
these two inputs, respectively.

D. Comparison With State-of-the-Art Methods

In order to validate the effectiveness of the proposed
union-saliency attack framework, we compared it with the
state-of-the-art (SOTA) competitors under the same configu-
ration [12], [14], [33], [34].

For objective evaluation, the results of L1 and L2 errors are
shown in Table I. Compared with the second-best Saliency-
Aware [14], the proposed method reduces L1 and L2 errors by
6.2% and 14.7%, respectively. Moreover, to further evaluate
the similarity between the original and the disturbed images
comprehensively, the results of the PSNR and the SSIM
are shown in Table II. The results prove that the proposed
framework outperforms all other competitors in terms of
both the PSNR and the SSIM. Specifically, compared with
the second-best method, the proposed framework improves
the PSNR and SSIM by 2.1% and 0.9%, respectively. This
signifies that the proposed method merely requires less noise
injection into the original image to achieve effective disruption
of the deepfake mode. Table I and Table II prove that the
proposed attack framework outperforms other competitors,
on the same set of benchmark settings with four evaluation
metrics. While both the proposed method and the second-
best Saliency-Aware model [14] integrate saliency masks,
the union-saliency attack framework goes a step further by
introducing the union masks. This strategic enhancement leads
to a more comprehensive representation of facial features
in the framework. Therefore, the proposed attack method
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TABLE II
COMPARATIVE RESULTS IN PSNR AND SSIM. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Fig. 6. Visualized results with different facial attributions.

TABLE III
ABLATION STUDIES ON THE KEY COMPONENTS AND THE PROPOSED LOSS FUNCTION. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

is able to further reduce the distortion of the image. In
consequence, the solid foundation provided by these results
is unquestionably essential for subsequent deepfake attack
methodologies.

The visualized results are depicted in Fig. 6. The original
images and disrupted images are processed by the widely
adopted StarGAN model [17] to perform operations on
different attributes. The subjective results demonstrate that
the image generated by feeding the disrupted image into
StarGAN has noticeable artifacts, and these images can be
easily distinguished visibly. Additionally, the concentration of
artifacts in the analyzed images is primarily localized in the
facial region, with a notably lower occurrence of artifacts
in non-facial images. This finding proves that the proposed
framework is capable of effectively disrupting the deepfake
model.

E. Ablation Studies

To validate the efficacy of the key components and the
adopted loss function, the ablation experiments are conducted.
Comparative results are listed in Table III. The corresponding
counterparts are depicted as follows.

• “baseline” is Spread-Spectrum attack [12]. The scores of
L1 error, L2error, PSNR and SSIM are 0.0169, 0.0714,
34.5212 and 0.9541, respectively.

• “baseline+Saliency mask” denotes the baseline model
with a saliency mask which is generated by TRACER
module [44]. Compared to the baseline model, adding the
saliency mask can reduce L1 and L2 errors by 1.2 % and
2.4%, respectively.

• “baseline+Union mask” indicates the baseline model
with a union mask, which generated by adding a saliency
feature mask and a manipulation mask. It shows that
adopting the union mask yields better performance than
the baseline.

• “baseline+Union mask+Noise generator” represents the
baseline by adding a union mask and noise generator.
It shows that the performance outperforms the baseline
by adding a single union mask in L2 error, PSNR and
SSIM.

• “baseline+Saliency mask+Noise generator+Lssim” indi-
cates the baseline by adding a saliency mask, noise
generator, and the SSIM loss. The scores of L1 error, L2
error, PSNR and SSIM are 0.0149, 0.0584, 35.3852, and
0.9636, respectively.

Authorized licensed use limited to: Queen Mary University of London. Downloaded on March 06,2025 at 11:54:15 UTC from IEEE Xplore.  Restrictions apply. 



ZHANG et al.: DISRUPTING DEEPFAKES VIA UNION-SALIENCY ADVERSARIAL ATTACK 2025

Fig. 7. Ablation study on different components. “b”: “baseline”, “b+s”: “baseline+Saliency mask”, “b+u”: “baseline+Union mask”, “b+u+n”:
“baseline+Union mask+Noise generator”, “b+s+n+l”: “baseline+Saliency mask+Noise generator+Lssim”, “b+u+n+l”: “baseline+Union mask+Noise
generator+Lssim”.

• “baseline+Union mask+Noise generator+Lssim” denotes
the baseline by adding a union mask, noise generator, and
the SSIM loss, which is the proposed framework. The
scores of L1 error, L2 error, PSNR and SSIM are 0.0147,
0.0580, 35.4274, and 0.9636, respectively. The results
indicate that the performance of the proposed framework
surpasses that of other combination models in terms of
L1 error, L2 error, PSNR, and SSIM metrics.

Table III proves that the individual components within the
proposed framework interact synergistically. The synergistic
interplay among these modules contributes to a substantial
enhancement in network performance. The performance com-
parison of the ablation studies is shown in Fig. 7.

V. CONCLUSION

In this paper, we propose a union-saliency attack framework
to provide an effective and practical solution to counter deep-
fake models while keeping image modifications to a minimum.
It employs a union mask to enhance the focus on the facial
features of individuals while adding perturbations to these
specific details rather than the irrelevant background regions.
This strategy introduces minimal changes to the original
image, with making the attack remain effective. Experiments
were conducted to showcase the effectiveness of the proposed
method, revealing its superiority over SOTA competitors. We
consider the proposed model to have the potential to safeguard
the privacy of individuals and address ethical concerns by
mitigating the harm caused by deepfake technology.
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